Pseudo-Riemannian weakly symmetric manifolds of low dimension
Bo Zhang; Zhiqi Chen; Shaoqiang Deng
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 811-835
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Bo, Chen, Zhiqi, and Deng, Shaoqiang. "Pseudo-Riemannian weakly symmetric manifolds of low dimension." Czechoslovak Mathematical Journal 69.3 (2019): 811-835. <http://eudml.org/doc/294735>.
@article{Zhang2019,
abstract = {We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions $2$ and $3$, based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive $3$-dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a $3$-dimensional reductive $2$-fold symmetric pseudo-Riemannian manifold must be globally symmetric.},
author = {Zhang, Bo, Chen, Zhiqi, Deng, Shaoqiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo-Riemannian manifold; pseudo-Riemannian weakly symmetric manifold; pseudo-Riemannian weakly symmetric Lie algebra; Lorentzian weakly symmetric manifold},
language = {eng},
number = {3},
pages = {811-835},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pseudo-Riemannian weakly symmetric manifolds of low dimension},
url = {http://eudml.org/doc/294735},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Zhang, Bo
AU - Chen, Zhiqi
AU - Deng, Shaoqiang
TI - Pseudo-Riemannian weakly symmetric manifolds of low dimension
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 811
EP - 835
AB - We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions $2$ and $3$, based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive $3$-dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a $3$-dimensional reductive $2$-fold symmetric pseudo-Riemannian manifold must be globally symmetric.
LA - eng
KW - pseudo-Riemannian manifold; pseudo-Riemannian weakly symmetric manifold; pseudo-Riemannian weakly symmetric Lie algebra; Lorentzian weakly symmetric manifold
UR - http://eudml.org/doc/294735
ER -
References
top- Berndt, J., Vanhecke, L., 10.2969/jmsj/04840745, J. Math. Soc. Japan 48 (1996), 745-760. (1996) Zbl0877.53027MR1404821DOI10.2969/jmsj/04840745
- Chen, Z., Wolf, J. A., 10.1007/s10455-011-9291-z, Ann. Global Anal. Geom. 41 (2012), 381-390. (2012) Zbl1237.53071MR2886205DOI10.1007/s10455-011-9291-z
- Barco, V. del, Ovando, G. P., 10.1007/s10455-013-9389-6, Ann. Global Anal. Geom. 45 (2014), 95-110. (2014) Zbl1295.53081MR3165476DOI10.1007/s10455-013-9389-6
- Deng, S., 10.4153/CJM-2010-004-x, Can. J. Math. 62 (2010), 52-73. (2010) Zbl1205.53078MR2597023DOI10.4153/CJM-2010-004-x
- Deng, S., 10.1515/crelle.2012.040, J. Reine Angew. Math. 680 (2013), 235-256. (2013) Zbl1273.53047MR3100956DOI10.1515/crelle.2012.040
- Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics 80, Academic Press, New York (1978). (1978) Zbl0451.53038MR0514561
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, Interscience Publishers, John Wiley & Sons, New York (1963). (1963) Zbl0119.37502MR0152974
- Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., New Ser. 20 (1956), 47-87. (1956) Zbl0072.08201MR0088511
- Wang, H.-C., 10.2307/1969427, Ann. Math. 55 (1952), 177-191. (1952) Zbl0048.40503MR0047345DOI10.2307/1969427
- Wolf, J. A., 10.1090/surv/142, Mathematical Surveys and Monographs 142, American Mathematical Society, Providence (2007). (2007) Zbl1156.22010MR2328043DOI10.1090/surv/142
- Yakimova, O. S., 10.1070/SM2004v195n04ABEH000817, Sb. Math. 195 (2004), 599-614 English. Russian original translation from Mat. Sb. 195 2004 143-160. (2004) Zbl1078.53043MR2086668DOI10.1070/SM2004v195n04ABEH000817
- Ziller, W., 10.1007/978-1-4612-2432-7, Topics in Geometry. In Memory of Joseph D'Atri Progr. Nonlinear Differ. Equ. Appl. 20, Birkhäuser, Boston Gindikin, S. et al. (1996), 355-368. (1996) Zbl0860.53030MR1390324DOI10.1007/978-1-4612-2432-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.