Some limit theorems for m -pairwise negative quadrant dependent random variables

Yongfeng Wu; Jiangyan Peng

Kybernetika (2018)

  • Volume: 54, Issue: 4, page 815-828
  • ISSN: 0023-5954

Abstract

top
The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent p ( 1 p 2 ) for m -pairwise negatively quadrant dependent ( m -PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise m -PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in this paper.

How to cite

top

Wu, Yongfeng, and Peng, Jiangyan. "Some limit theorems for $m$-pairwise negative quadrant dependent random variables." Kybernetika 54.4 (2018): 815-828. <http://eudml.org/doc/294740>.

@article{Wu2018,
abstract = {The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent $p$ ($1\le p\le 2$) for $m$-pairwise negatively quadrant dependent ($m$-PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise $m$-PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in this paper.},
author = {Wu, Yongfeng, Peng, Jiangyan},
journal = {Kybernetika},
keywords = {$m$-pairwise negative quadrant dependent; Marcinkiewicz–Zygmund inequality; $L^r$ convergence; complete convergence},
language = {eng},
number = {4},
pages = {815-828},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Some limit theorems for $m$-pairwise negative quadrant dependent random variables},
url = {http://eudml.org/doc/294740},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Wu, Yongfeng
AU - Peng, Jiangyan
TI - Some limit theorems for $m$-pairwise negative quadrant dependent random variables
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 815
EP - 828
AB - The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent $p$ ($1\le p\le 2$) for $m$-pairwise negatively quadrant dependent ($m$-PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise $m$-PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in this paper.
LA - eng
KW - $m$-pairwise negative quadrant dependent; Marcinkiewicz–Zygmund inequality; $L^r$ convergence; complete convergence
UR - http://eudml.org/doc/294740
ER -

References

top
  1. Baek, J. I., Ko, M. H., Kim, T. S., 10.4134/jkms.2008.45.4.1101, J. Korean Math. Soc. 45 (2008), 1101-1111. MR2422730DOI10.4134/jkms.2008.45.4.1101
  2. Baek, J. I., Park, S. T., 10.1016/j.jspi.2010.02.021, J. Stat. Plann. Inference 140 (2010), 2461-2469. MR2644067DOI10.1016/j.jspi.2010.02.021
  3. Cabrera, M. O., Volodin, A., 10.1016/j.jmaa.2004.12.025, J. Math. Anal. Appl. 305 (2005), 644-658. MR2131528DOI10.1016/j.jmaa.2004.12.025
  4. Ebrahimi, N., Ghosh, M., 10.1080/03610928108828041, Commun. Stat. Theory Methods 10 (1981), 307-337. MR0612400DOI10.1080/03610928108828041
  5. Gan, S., Chen, P., 10.1016/s0252-9602(08)60027-2, Acta Math. Sci., Ser. B, Engl. Ed. 28 (2008), 269-281. MR2411834DOI10.1016/s0252-9602(08)60027-2
  6. Gan, S., Chen, P., 10.1007/s11859-010-0685-8, Wuhan Univ. J. Nat. Sci. 15 (2010), 467-470. MR2797770DOI10.1007/s11859-010-0685-8
  7. Joag-Dev, K., Proschan, F., 10.1214/aos/1176346079, Ann. Stat. 11 (1983), 286-295. MR0684886DOI10.1214/aos/1176346079
  8. Lehmann, E. L., 10.1214/aoms/1177699260, Ann. Math. Stat., 37 (1966), 1137-1153. Zbl0146.40601MR0202228DOI10.1214/aoms/1177699260
  9. Liang, H., Chen, Z., Su, C., 10.1007/s102550200014, Acta Math. Appl. Sin. Engl. Ser. 18 (2002), 161-168. MR2010903DOI10.1007/s102550200014
  10. Li, R., Yang, W., 10.1016/j.jmaa.2008.02.053, J. Math. Anal. Appl. 344 (2008), 741-747. MR2426304DOI10.1016/j.jmaa.2008.02.053
  11. Matula, P., 10.1016/0167-7152(92)90191-7, Statist. Probab. Lett. 15 (1992), 209-213. Zbl0925.60024MR1190256DOI10.1016/0167-7152(92)90191-7
  12. Meng, Y., Lin, Z., 10.1016/j.spl.2009.08.014, Statist. Probab. Lett. 79 (2009), 2405-2414. MR2556321DOI10.1016/j.spl.2009.08.014
  13. Nelsen, R. B., 10.1007/0-387-28678-0, Springer, New York 2006. MR2197664DOI10.1007/0-387-28678-0
  14. Newman, C. M., 10.1214/lnms/1215465639, In: Inequalities in Statistics and Probability (Y. L. Tong, ed.), IMS Lecture Notes Monogr. Ser. 5, 1984, pp. 127-140. MR0789244DOI10.1214/lnms/1215465639
  15. Sung, H. S., 10.1016/j.aml.2011.12.030, Appl. Math. Lett. 26 (2013), 18-24. MR2971393DOI10.1016/j.aml.2011.12.030
  16. Sung, H. S., Lisawadi, S., Volodin, A., 10.4134/jkms.2008.45.1.289, J. Korean Math. Soc. 45 (2008), 289-300. MR2375136DOI10.4134/jkms.2008.45.1.289
  17. Wu, Y., Rosalsky, A., 10.3336/gm.50.1.15, Glasnik Matematicki 50 (2015), 245-259. MR3361275DOI10.3336/gm.50.1.15
  18. Wu, Q., Convergence properties of pairwise NQD random sequences., Acta Math. Sin. Engl. Ser. 45 (2002), 617-624 (in Chinese). MR1915127
  19. Wu, Y., Guan, M., 10.1016/j.jmaa.2010.11.042, J. Math. Anal. Appl. 377 (2011), 613-623. MR2769161DOI10.1016/j.jmaa.2010.11.042
  20. Wu, Q., Jiang, Y., 10.1007/s11424-011-8086-4, J. Syst. Sci. Complex. 24 (2011), 347-357. MR2802568DOI10.1007/s11424-011-8086-4
  21. Wu, Y., Wang, D., 10.1007/s10492-012-0027-6, Appl. Math., Praha 57 (2012), 463-476. MR2984614DOI10.1007/s10492-012-0027-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.