Some limit theorems for -pairwise negative quadrant dependent random variables
Kybernetika (2018)
- Volume: 54, Issue: 4, page 815-828
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWu, Yongfeng, and Peng, Jiangyan. "Some limit theorems for $m$-pairwise negative quadrant dependent random variables." Kybernetika 54.4 (2018): 815-828. <http://eudml.org/doc/294740>.
@article{Wu2018,
abstract = {The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent $p$ ($1\le p\le 2$) for $m$-pairwise negatively quadrant dependent ($m$-PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise $m$-PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in this paper.},
author = {Wu, Yongfeng, Peng, Jiangyan},
journal = {Kybernetika},
keywords = {$m$-pairwise negative quadrant dependent; Marcinkiewicz–Zygmund inequality; $L^r$ convergence; complete convergence},
language = {eng},
number = {4},
pages = {815-828},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Some limit theorems for $m$-pairwise negative quadrant dependent random variables},
url = {http://eudml.org/doc/294740},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Wu, Yongfeng
AU - Peng, Jiangyan
TI - Some limit theorems for $m$-pairwise negative quadrant dependent random variables
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 815
EP - 828
AB - The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent $p$ ($1\le p\le 2$) for $m$-pairwise negatively quadrant dependent ($m$-PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise $m$-PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in this paper.
LA - eng
KW - $m$-pairwise negative quadrant dependent; Marcinkiewicz–Zygmund inequality; $L^r$ convergence; complete convergence
UR - http://eudml.org/doc/294740
ER -
References
top- Baek, J. I., Ko, M. H., Kim, T. S., 10.4134/jkms.2008.45.4.1101, J. Korean Math. Soc. 45 (2008), 1101-1111. MR2422730DOI10.4134/jkms.2008.45.4.1101
- Baek, J. I., Park, S. T., 10.1016/j.jspi.2010.02.021, J. Stat. Plann. Inference 140 (2010), 2461-2469. MR2644067DOI10.1016/j.jspi.2010.02.021
- Cabrera, M. O., Volodin, A., 10.1016/j.jmaa.2004.12.025, J. Math. Anal. Appl. 305 (2005), 644-658. MR2131528DOI10.1016/j.jmaa.2004.12.025
- Ebrahimi, N., Ghosh, M., 10.1080/03610928108828041, Commun. Stat. Theory Methods 10 (1981), 307-337. MR0612400DOI10.1080/03610928108828041
- Gan, S., Chen, P., 10.1016/s0252-9602(08)60027-2, Acta Math. Sci., Ser. B, Engl. Ed. 28 (2008), 269-281. MR2411834DOI10.1016/s0252-9602(08)60027-2
- Gan, S., Chen, P., 10.1007/s11859-010-0685-8, Wuhan Univ. J. Nat. Sci. 15 (2010), 467-470. MR2797770DOI10.1007/s11859-010-0685-8
- Joag-Dev, K., Proschan, F., 10.1214/aos/1176346079, Ann. Stat. 11 (1983), 286-295. MR0684886DOI10.1214/aos/1176346079
- Lehmann, E. L., 10.1214/aoms/1177699260, Ann. Math. Stat., 37 (1966), 1137-1153. Zbl0146.40601MR0202228DOI10.1214/aoms/1177699260
- Liang, H., Chen, Z., Su, C., 10.1007/s102550200014, Acta Math. Appl. Sin. Engl. Ser. 18 (2002), 161-168. MR2010903DOI10.1007/s102550200014
- Li, R., Yang, W., 10.1016/j.jmaa.2008.02.053, J. Math. Anal. Appl. 344 (2008), 741-747. MR2426304DOI10.1016/j.jmaa.2008.02.053
- Matula, P., 10.1016/0167-7152(92)90191-7, Statist. Probab. Lett. 15 (1992), 209-213. Zbl0925.60024MR1190256DOI10.1016/0167-7152(92)90191-7
- Meng, Y., Lin, Z., 10.1016/j.spl.2009.08.014, Statist. Probab. Lett. 79 (2009), 2405-2414. MR2556321DOI10.1016/j.spl.2009.08.014
- Nelsen, R. B., 10.1007/0-387-28678-0, Springer, New York 2006. MR2197664DOI10.1007/0-387-28678-0
- Newman, C. M., 10.1214/lnms/1215465639, In: Inequalities in Statistics and Probability (Y. L. Tong, ed.), IMS Lecture Notes Monogr. Ser. 5, 1984, pp. 127-140. MR0789244DOI10.1214/lnms/1215465639
- Sung, H. S., 10.1016/j.aml.2011.12.030, Appl. Math. Lett. 26 (2013), 18-24. MR2971393DOI10.1016/j.aml.2011.12.030
- Sung, H. S., Lisawadi, S., Volodin, A., 10.4134/jkms.2008.45.1.289, J. Korean Math. Soc. 45 (2008), 289-300. MR2375136DOI10.4134/jkms.2008.45.1.289
- Wu, Y., Rosalsky, A., 10.3336/gm.50.1.15, Glasnik Matematicki 50 (2015), 245-259. MR3361275DOI10.3336/gm.50.1.15
- Wu, Q., Convergence properties of pairwise NQD random sequences., Acta Math. Sin. Engl. Ser. 45 (2002), 617-624 (in Chinese). MR1915127
- Wu, Y., Guan, M., 10.1016/j.jmaa.2010.11.042, J. Math. Anal. Appl. 377 (2011), 613-623. MR2769161DOI10.1016/j.jmaa.2010.11.042
- Wu, Q., Jiang, Y., 10.1007/s11424-011-8086-4, J. Syst. Sci. Complex. 24 (2011), 347-357. MR2802568DOI10.1007/s11424-011-8086-4
- Wu, Y., Wang, D., 10.1007/s10492-012-0027-6, Appl. Math., Praha 57 (2012), 463-476. MR2984614DOI10.1007/s10492-012-0027-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.