Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables
Applications of Mathematics (2012)
- Volume: 57, Issue: 5, page 463-476
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWu, Yongfeng, and Wang, Dingcheng. "Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables." Applications of Mathematics 57.5 (2012): 463-476. <http://eudml.org/doc/246496>.
@article{Wu2012,
abstract = {In this paper the authors study the convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables. The results extend and improve the corresponding theorems of T. C. Hu, R. L. Taylor: On the strong law for arrays and for the bootstrap mean and variance, Int. J. Math. Math. Sci 20 (1997), 375–382.},
author = {Wu, Yongfeng, Wang, Dingcheng},
journal = {Applications of Mathematics},
keywords = {complete convergence; complete moment convergence; $L^q$ convergence; pairwise NQD random variables; complete convergence; complete moment convergence; convergence; pairwise NQD random variables},
language = {eng},
number = {5},
pages = {463-476},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables},
url = {http://eudml.org/doc/246496},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Wu, Yongfeng
AU - Wang, Dingcheng
TI - Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 5
SP - 463
EP - 476
AB - In this paper the authors study the convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables. The results extend and improve the corresponding theorems of T. C. Hu, R. L. Taylor: On the strong law for arrays and for the bootstrap mean and variance, Int. J. Math. Math. Sci 20 (1997), 375–382.
LA - eng
KW - complete convergence; complete moment convergence; $L^q$ convergence; pairwise NQD random variables; complete convergence; complete moment convergence; convergence; pairwise NQD random variables
UR - http://eudml.org/doc/246496
ER -
References
top- Adler, A., Rosalsky, A., Volodin, A., 10.1016/S0167-7152(97)85593-9, Stat. Probab. Lett. 32 (1997), 167-174. (1997) Zbl0874.60008MR1436862DOI10.1016/S0167-7152(97)85593-9
- Bryc, W., Smoleński, W., 10.1090/S0002-9939-1993-1149969-7, Proc. Am. Math. Soc. 119 (1993), 629-635. (1993) Zbl0785.60018MR1149969DOI10.1090/S0002-9939-1993-1149969-7
- Chow, Y. S., On the rate of moment complete convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin. 16 (1988), 177-201. (1988) MR1089491
- Ebrahimi, N., Ghosh, M., 10.1080/03610928108828041, Commun. Stat., Theory Methods 10 (1981), 307-337. (1981) Zbl0506.62034MR0612400DOI10.1080/03610928108828041
- Gan, S. X., Chen, P. Y., 10.1016/S0252-9602(07)60027-7, Acta Math. Sci., Ser. B, Engl. Ed. 27 (2007), 283-290. (2007) Zbl1125.60027MR2313226DOI10.1016/S0252-9602(07)60027-7
- Hsu, P. L., Robbins, H., 10.1073/pnas.33.2.25, Proc. Natl. Acad. Sci. 33 (1947), 25-31. (1947) Zbl0030.20101MR0019852DOI10.1073/pnas.33.2.25
- Hu, T. C., Taylor, R. L., 10.1155/S0161171297000483, Int. J. Math. Math. Sci. 20 (1997), 375-382. (1997) Zbl0883.60024MR1444739DOI10.1155/S0161171297000483
- Joag-Dev, K., Proschan, F., 10.1214/aos/1176346079, Ann. Stat. 11 (1983), 286-295. (1983) MR0684886DOI10.1214/aos/1176346079
- Lehmann, E. L., 10.1214/aoms/1177699260, Ann. Math. Stat. 37 (1966), 1137-1153. (1966) Zbl0146.40601MR0202228DOI10.1214/aoms/1177699260
- Wang, D. C., Zhao, W., Moment complete convergence for sums of a sequence of NA random variables, Appl. Math., Ser. A (Chin. Ed.) 21 (2006), 445-450 Chinese. (2006) Zbl1137.60320MR2270685
- Wu, Q. Y., Convergence properties of pairwise NQD random sequences, Acta Math. Sin. 45 (2002), 617-624 Chinese. (2002) Zbl1008.60039MR1915127
- Wu, Y. F., Zhu, D. J., 10.1016/j.jkss.2009.05.003, J. Korean Stat. Soc. 39 (2010), 189-197 2642485. (2010) Zbl1294.60056MR2642485DOI10.1016/j.jkss.2009.05.003
- Yang, S. C., Almost sure convergence of weighted sums of mixing sequences, J. Syst. Sci. Math. Sci. 15 (1995), 254-265 Chinese. (1995) Zbl0869.60029
Citations in EuDML Documents
top- Yongfeng Wu, Jiangyan Peng, Some limit theorems for -pairwise negative quadrant dependent random variables
- Andrew Rosalsky, Yongfeng Wu, Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.