Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays
Kybernetika (2018)
- Volume: 54, Issue: 4, page 844-863
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTan, Manchun, and Xu, Desheng. "Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays." Kybernetika 54.4 (2018): 844-863. <http://eudml.org/doc/294754>.
@article{Tan2018,
abstract = {This paper explores the problem of delay-independent and delay-dependent stability for a class of complex-valued neutral-type neural networks with time delays. Aiming at the neutral-type neural networks, an appropriate function is constructed to derive the existence of equilibrium point. On the basis of homeomorphism theory, Lyapunov functional method and linear matrix inequality techniques, several LMI-based sufficient conditions on the existence, uniqueness and global asymptotic stability of equilibrium point for complex-valued neutral-type neural networks are obtained. Finally, numerical examples are given to illustrate the feasibility and the effectiveness of the proposed theoretical results.},
author = {Tan, Manchun, Xu, Desheng},
journal = {Kybernetika},
keywords = {complex-valued neutral-type neural networks; existence and uniqueness of equilibrium; global asymptotic stability; inequality techniques; Lyapunov functional},
language = {eng},
number = {4},
pages = {844-863},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays},
url = {http://eudml.org/doc/294754},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Tan, Manchun
AU - Xu, Desheng
TI - Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 844
EP - 863
AB - This paper explores the problem of delay-independent and delay-dependent stability for a class of complex-valued neutral-type neural networks with time delays. Aiming at the neutral-type neural networks, an appropriate function is constructed to derive the existence of equilibrium point. On the basis of homeomorphism theory, Lyapunov functional method and linear matrix inequality techniques, several LMI-based sufficient conditions on the existence, uniqueness and global asymptotic stability of equilibrium point for complex-valued neutral-type neural networks are obtained. Finally, numerical examples are given to illustrate the feasibility and the effectiveness of the proposed theoretical results.
LA - eng
KW - complex-valued neutral-type neural networks; existence and uniqueness of equilibrium; global asymptotic stability; inequality techniques; Lyapunov functional
UR - http://eudml.org/doc/294754
ER -
References
top- Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnam, V., 10.1137/1.9781611970777, SIAM, Philadelphia, 1994. DOI10.1137/1.9781611970777
- Cao, J. D., Chen, G. R., Li, P., 10.1109/tsmcb.2007.914705, IEEE Trans. Syst. Man Cybern. B 38 (2008), 2, 488-498. DOI10.1109/tsmcb.2007.914705
- Chen, X. F., Song, Q. K., 10.1016/j.neucom.2013.04.040, Neurocomputing 121 (2013), 254-264. DOI10.1016/j.neucom.2013.04.040
- Ding, X. S., Cao, J. D., Alsaedi, A., Alsaadi, F. E., Hayat, T., 10.1016/j.neunet.2017.03.006, Neural Netw. 90 (2017), 42-55. DOI10.1016/j.neunet.2017.03.006
- Du, B., Liu, Y., Cao, J. D., 10.14736/kyb-2017-3-0513, Kybernetika 53 (2017), 3, 513-529. MR3684683DOI10.14736/kyb-2017-3-0513
- Fang, T., Sun, J. T., 10.1109/tnnls.2013.2294638, IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), 9, 1709-1713. MR3453740DOI10.1109/tnnls.2013.2294638
- Fang, T., Sun, J. T., 10.1016/j.nahs.2014.04.004, Nonlinear Anal. Hybrid Syst. 14 (2014), 38-46. MR3228049DOI10.1016/j.nahs.2014.04.004
- Feng, J. E., Xu, S. Y., Zou, Y., 10.1016/j.neucom.2008.10.018, Neurocomputing 72 (2009), 10-12, 2576-2580. DOI10.1016/j.neucom.2008.10.018
- Forti, M., Tesi, A., 10.1109/81.641813, IEEE Trans. Circuits Syst. I 42 (1995), 354-366. MR1351871DOI10.1109/81.641813
- Gong, W. Q., Liang, J. L., Zhang, C. J., Cao, J. D., 10.1007/s11063-015-9475-9, Neural Process. Lett. 44 (2015), 539-554. DOI10.1007/s11063-015-9475-9
- Guo, R. N., Zhang, Z. Y., Liu, X. P., Lin, C., 10.1016/j.amc.2017.05.021, Appl. Math. Comput. 311 (2017), 100-117. MR3658062DOI10.1016/j.amc.2017.05.021
- Hirose, A., 10.1142/9789812791184, World Scientific, Singapore 2003. MR2061862DOI10.1142/9789812791184
- Hirose, A., 10.1007/978-3-642-13232-2_6, In: Artif. Intell. Soft. Comput. II, Vol. 6114 (L. Rutkowski et al., eds.), Springer, New York 2010, pp. 42-46. DOI10.1007/978-3-642-13232-2_6
- Hu, J., Wang, J., 10.1109/tnnls.2012.2195028, IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), 6, 853-865. MR3453740DOI10.1109/tnnls.2012.2195028
- Liao, X. F., Liu, Y. L., Wang, H. W., Huang, T. W., 10.1016/j.neucom.2014.07.048, Neurocomputing 149 (2015), 868-883. MR3593044DOI10.1016/j.neucom.2014.07.048
- Liu, X. W., Chen, T. P., 10.1109/tnnls.2015.2415496, IEEE Trans. Neural Netw. Learn. Syst. 27 (2016), 3, 593-606. MR3465659DOI10.1109/tnnls.2015.2415496
- Pan, J., Liu, X. Z., Xie, W. C., 10.1016/j.neucom.2015.02.024, Neurocomputing 164 (2015), 293-299. DOI10.1016/j.neucom.2015.02.024
- Orman, Z., 10.1016/j.neucom.2012.05.016, Neurocomputing 97 (2012), 141-148. DOI10.1016/j.neucom.2012.05.016
- Patan, K., 10.1109/tnn.2007.891199, IEEE Trans. Neural Netw. 18 (2007), 3, 660-673. DOI10.1109/tnn.2007.891199
- Park, J. H., Kwon, O. M., 10.1016/j.amc.2008.11.017, Appl. Math. Comput. 208 (2009), 1, 69-75. MR2490770DOI10.1016/j.amc.2008.11.017
- Park, J. H., Kwon, O. M., Lee, S. M., 10.1016/j.amc.2007.05.047, Appl. Math. Comput. 196 (2008), 1, 236-244. MR2382607DOI10.1016/j.amc.2007.05.047
- Park, J. H., Park, C. H., Kwon, O. M., Lee, S. M., 10.1016/j.amc.2007.10.032, Appl. Math. Comput. 199 (2008), 2, 716-722. MR2420599DOI10.1016/j.amc.2007.10.032
- Shi, K. B., Zhong, S. M., Zhu, H., Liu, X. Z., Zeng, Y., 10.1016/j.neucom.2015.05.035, Neurocomputing 168 (2015), 896-907. MR3402310DOI10.1016/j.neucom.2015.05.035
- Shu, Y.J., Liu, X.G., Wang, F.X., Qiu, S.B., 10.1002/mma.4281, Math. Method. Appl. Sci. 40 (2017), 11, 4014-4027. MR3668827DOI10.1002/mma.4281
- Song, Q. K., 10.1016/j.neucom.2009.04.009, Neurocomputing 72 (2009), 3907-3914. DOI10.1016/j.neucom.2009.04.009
- Song, Q. K., Shu, H. Q., Zhao, Z. J., Liu, Y. R., Alsaadi, F. E., 10.1016/j.neucom.2017.03.015, Neurocomputing 244 (2017), 33-41. DOI10.1016/j.neucom.2017.03.015
- Song, Q. K., Yan, H., Zhao, Z. J., Liu, Y. R., 10.1016/j.neunet.2016.04.012, Neural Netw. 81 (2016), 1-10. DOI10.1016/j.neunet.2016.04.012
- Song, Q. K., Zhao, Z. J., Liu, Y. R., 10.1016/j.neucom.2015.02.015, Neurocomputing 159 (2015), 96-104. DOI10.1016/j.neucom.2015.02.015
- Subramanian, K., Muthukumar, P., 10.1007/s11571-017-9429-1, Cogn. Neurodynamics 11 (2017), 3, 293-306. DOI10.1007/s11571-017-9429-1
- Tan, M. C., 10.1007/s11063-010-9130-4, Neural Process. Lett. 31 (2010), 2, 147-157. DOI10.1007/s11063-010-9130-4
- Tan, M. C., 10.1007/s11063-015-9416-7, Neural Process. Lett. 43 (2016), 1, 255-268. DOI10.1007/s11063-015-9416-7
- Tan, Y. X., Jing, K., 10.1002/mma.3732, Math. Method. Appl. Sci. 39 (2016), 11, 2821-2839. MR3512733DOI10.1002/mma.3732
- Tan, M. C., Xu, D. S., 10.1016/j.neucom.2017.10.038, Neurocomputing 275 (2018), 2681-2701. DOI10.1016/j.neucom.2017.10.038
- Tan, M. C., Zhang, Y. N., 10.1016/j.nonrwa.2008.03.022, Nonlinear Anal. Real World Appl. 10 (2009), 2139-2145. MR2508424DOI10.1016/j.nonrwa.2008.03.022
- Tian, X. H., Xu, R., 10.1002/mma.3995, Math. Method. Appl. Sci. 40 (2017), 1, 293-305. MR3583055DOI10.1002/mma.3995
- Tu, Z. W., Cao, J. D., Alsaedi, A., Alsaadi, F. E., Hayat, T., 10.1002/cplx.21823, Complexity 21 (2016), S2, 438-450. MR3583097DOI10.1002/cplx.21823
- Wang, H. M., Duan, S. K., Huang, T. W., Wang, L. D., Li, C. D., 10.1109/TNNLS.2015.2513001, IEEE Trans. Neural Netw. Learn. Syst. 28 (2017), 3, 766-771. MR3730910DOI10.1109/TNNLS.2015.2513001
- Wang, Z. Y., Huang, L. H., 10.1016/j.neucom.2015.09.086, Neurocomputing 173 (2016), 2083-2089. DOI10.1016/j.neucom.2015.09.086
- Wang, P., Li, Y. K., Ye, Y., 10.1002/mma.3857, Math. Method. Appl. Sci. 39 (2016), 15, 4297-4310. MR3549393DOI10.1002/mma.3857
- Wang, L., Xie, Y., Wei, Z., Peng, J., 10.14736/kyb-2015-5-0800, Kybernetika 51 (2015), 5, 800-813. MR3445985DOI10.14736/kyb-2015-5-0800
- Xie, J., Kao, Y. G., Park, J.H., 10.1016/j.nahs.2017.10.002, Nonlinear Anal. Hybrid Syst. 27 (2018), 416-436. MR3729580DOI10.1016/j.nahs.2017.10.002
- Xu, C. J., Li, P. L., Pang, Y. C., 10.1002/mma.4132, Math. Method. Appl. Sci. 40 (2017), 6, 2177-2196. MR3624090DOI10.1002/mma.4132
- Xu, X. H., Zhang, J. Y., Shi, J. Z., 10.1016/j.neucom.2013.08.014, Neurocomputing 128 (2014), 483-490. DOI10.1016/j.neucom.2013.08.014
- Zhang, H. G., Gong, D. W., Wang, Z. S., 10.1007/s11063-011-9202-0, Neural Process. Lett. 35 (2012), 1, 29-45. DOI10.1007/s11063-011-9202-0
- Zhang, Z. Y., Liu, X. P., Chen, J., Guo, R. N., Zhou, S. W., 10.1016/j.neucom.2017.04.013, Neurocomputing 251 (2017), 81-89. DOI10.1016/j.neucom.2017.04.013
- Zhang, Z. Y., Lin, C., Chen, B., 10.1109/tnnls.2013.2288943, IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), 9, 1704-1708. DOI10.1109/tnnls.2013.2288943
- Zhang, Z. Q., Yu, S. H., 10.1016/j.neucom.2015.07.051, Neurocomputing 171 (2016), 1158-1166. DOI10.1016/j.neucom.2015.07.051
- Zeng, X., Li, C. D., Huang, T. W., He, X., 10.1016/j.amc.2015.01.006, Appl. Math. Comput. 256 (2015), 75-82. MR3316049DOI10.1016/j.amc.2015.01.006
- Zheng, C. D., Shan, Q. H., Zhang, H. G., 10.1109/tnnls.2013.2244613, IEEE Trans. Neural Netw. Learn. Syst. 24 (2013), 800-811. DOI10.1109/tnnls.2013.2244613
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.