Stability analysis and absolute synchronization of a three-unit delayed neural network

Lin Jun Wang; You Xiang Xie; Zhou Chao Wei; Jian Peng

Kybernetika (2015)

  • Volume: 51, Issue: 5, page 800-813
  • ISSN: 0023-5954

Abstract

top
In this paper, we consider a three-unit delayed neural network system, investigate the linear stability, and obtain some sufficient conditions ensuring the absolute synchronization of the system by the Lyapunov function. Numerical simulations show that the theoretically predicted results are in excellent agreement with the numerically observed behavior.

How to cite

top

Wang, Lin Jun, et al. "Stability analysis and absolute synchronization of a three-unit delayed neural network." Kybernetika 51.5 (2015): 800-813. <http://eudml.org/doc/276069>.

@article{Wang2015,
abstract = {In this paper, we consider a three-unit delayed neural network system, investigate the linear stability, and obtain some sufficient conditions ensuring the absolute synchronization of the system by the Lyapunov function. Numerical simulations show that the theoretically predicted results are in excellent agreement with the numerically observed behavior.},
author = {Wang, Lin Jun, Xie, You Xiang, Wei, Zhou Chao, Peng, Jian},
journal = {Kybernetika},
keywords = {absolute synchronization; delay; linear stability; neural network},
language = {eng},
number = {5},
pages = {800-813},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability analysis and absolute synchronization of a three-unit delayed neural network},
url = {http://eudml.org/doc/276069},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Wang, Lin Jun
AU - Xie, You Xiang
AU - Wei, Zhou Chao
AU - Peng, Jian
TI - Stability analysis and absolute synchronization of a three-unit delayed neural network
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 5
SP - 800
EP - 813
AB - In this paper, we consider a three-unit delayed neural network system, investigate the linear stability, and obtain some sufficient conditions ensuring the absolute synchronization of the system by the Lyapunov function. Numerical simulations show that the theoretically predicted results are in excellent agreement with the numerically observed behavior.
LA - eng
KW - absolute synchronization; delay; linear stability; neural network
UR - http://eudml.org/doc/276069
ER -

References

top
  1. Albertini, F., Alessandro, D., 10.1109/81.847877, IEEE Trans. Circuits Syst I. 47 (2000), 723-729. DOI10.1109/81.847877
  2. Bélair, J., Campbell, S. A., Driessche, P. van den, 10.1137/s0036139994274526, SIAM J. Appl. Math. 56 (1996), 245-255. MR1372899DOI10.1137/s0036139994274526
  3. Bélair, J., 10.1007/bf01049141, J. Dynam. Dif. Equns. 5 (1993), 603-623. Zbl0796.34063MR1250263DOI10.1007/bf01049141
  4. Bélair, J., Campbell, S. A., 10.1137/s0036139993248853, SIAM J. Appl. Math. 54 (1994), 1402-1424. Zbl0809.34077MR1293106DOI10.1137/s0036139993248853
  5. Beuter, A., Belair, J., Labrie, C., 10.1016/s0092-8240(05)80238-1, Bull. Math. Biol. 55 (1993), 525-541. DOI10.1016/s0092-8240(05)80238-1
  6. Campbell, S. A., Ruan, S., Wolkowicz, G. S. K., Wu, J., Stability and bifurcation of a simple neural network with multiple time delays., Fields Institute Communications, vol. 21, American Mathematical Society, Providence, RI, 1998, pp. 65-79. MR1662603
  7. Chen, Y., Huang, Y., Wu, J., 10.1090/s0002-9939-00-05635-5, Proc. Amer. Math. Soc. 128 (2000), 2365-2371. Zbl0945.34056MR1709744DOI10.1090/s0002-9939-00-05635-5
  8. Chen, Y., Lü, J. H., Lin, Z. L., 10.1016/j.automatica.2013.02.021, Automatica 49 (2013), 1768-1775. MR3049226DOI10.1016/j.automatica.2013.02.021
  9. Cushing, J. M., 10.1007/978-3-642-93073-7, Lecture Notes in Biomath, vol. 20, Springer, New York 1977. DOI10.1007/978-3-642-93073-7
  10. Dhamala, M., Jirsa, V., Ding, M., 10.1103/physrevlett.92.074104, Phys. Rev. Lett. 92 (2004), 74-104. DOI10.1103/physrevlett.92.074104
  11. Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H. O., 10.1007/978-1-4612-4206-2, Springer Verlag, New York 1995. MR1345150DOI10.1007/978-1-4612-4206-2
  12. ., P., Driessche, Zou, X., 10.1137/s0036139997321219, SIAM J. Appl. Math. 58 (1998), 1878-1890. MR1638696DOI10.1137/s0036139997321219
  13. Faria, T., 10.1006/jdeq.2000.3881, J. Diff. Equns. 168 (2000), 129-149. Zbl0961.92002MR1801347DOI10.1006/jdeq.2000.3881
  14. Faria, T., Magalhes, L. T., 10.1006/jdeq.1995.1144, J. Diff. Equations. 122 (1995), 181-200. MR1355888DOI10.1006/jdeq.1995.1144
  15. Gopalsamy, K., Leung, I., 10.1016/0167-2789(95)00203-0, Physica D. 89 (1996), 395-426. MR1369242DOI10.1016/0167-2789(95)00203-0
  16. Hale, J., Theory of Functional Differential Equations., Springer, New York 1997. Zbl0662.34064MR0508721
  17. Hale, J., Kocak, H., Dynamics and Bifurcations., Springer, New York 1991. Zbl0745.58002MR1138981
  18. Hale, J., Lunel, S. V., 10.1007/978-1-4612-4342-7, Springer, New York 1993. Zbl0787.34002MR1243878DOI10.1007/978-1-4612-4342-7
  19. Hirsch, M. W., 10.1016/0893-6080(89)90018-x, Neural Networks 2 (1989), 331-349. DOI10.1016/0893-6080(89)90018-x
  20. Hopfield, J., 10.1073/pnas.81.10.3088, Proc. Natl. Acad. Sci. USA 81 (1994), 3088-3092. DOI10.1073/pnas.81.10.3088
  21. Huang, L., Wu, J., Dynamics of inhibitory artificial neural networks with threshold nonlinearity., Fields Ins. Commun. 29 (2001), 235-243. Zbl0973.92002MR1821784
  22. Karimi, H. R., Gao, H. J., 10.1109/tsmcb.2009.2024408, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 40 (2010), 173-185. DOI10.1109/tsmcb.2009.2024408
  23. Liu, Y. R., Wang, Z. D., Liang, J. L., 10.1109/tnn.2009.2016210, IEEE Transactions on Neural Networks 20 (2009), 1102-1116. DOI10.1109/tnn.2009.2016210
  24. Lü, J. H., Chen, G. R., 10.1109/tac.2005.849233, IEEE Trans. Automat. Control 50 (2005), 6, 841-846. MR2142000DOI10.1109/tac.2005.849233
  25. Marcus, C. M., Westervelt, R. M., 10.1103/physreva.39.347, Phys. Rev. A. 39 (1989), 347-359. MR0978323DOI10.1103/physreva.39.347
  26. Niebur, E., Schuster, H., Kammen, D., 10.1103/physrevlett.67.2753, Phys. Rev. Lett. 67 (1991), 2753-2756. DOI10.1103/physrevlett.67.2753
  27. Rosenblum, M. G., Pikovsky, A. S., 10.1103/physrevlett.92.114102, Phys. Rev. Lett. 92 (2004), 102-114. DOI10.1103/physrevlett.92.114102
  28. Ruan, S., Wei, J., On the zeros of transcendental functions with applications to stability of delayed differential equations with two delays, Dyn., Discrete Impuls Syst Ser A: Math. Anal. 10 (2003), 63-74. MR2008751
  29. Wu, J., 10.1515/9783110879971, Walter de Cruyter, Berlin 2001. Zbl0977.34069MR1834537DOI10.1515/9783110879971
  30. Wu, J., 10.1515/9783110879971, Trans. Amer. Math. Soc. 350 (1998), 4799-4838. Zbl0905.34034MR1451617DOI10.1515/9783110879971
  31. Yeung, M., Strogatz, S., 10.1103/physrevlett.82.648, Phys. Rev. Lett. 82 (1999), 648-651. MR2699004DOI10.1103/physrevlett.82.648
  32. Zhou, J., Lu, J. A., Lü, J. H., 10.1109/tac.2006.872760, IEEE Trans. Automat. Control 51 (2006), 4, 652-656. MR2228029DOI10.1109/tac.2006.872760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.