Stability analysis and absolute synchronization of a three-unit delayed neural network
Lin Jun Wang; You Xiang Xie; Zhou Chao Wei; Jian Peng
Kybernetika (2015)
- Volume: 51, Issue: 5, page 800-813
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWang, Lin Jun, et al. "Stability analysis and absolute synchronization of a three-unit delayed neural network." Kybernetika 51.5 (2015): 800-813. <http://eudml.org/doc/276069>.
@article{Wang2015,
abstract = {In this paper, we consider a three-unit delayed neural network system, investigate the linear stability, and obtain some sufficient conditions ensuring the absolute synchronization of the system by the Lyapunov function. Numerical simulations show that the theoretically predicted results are in excellent agreement with the numerically observed behavior.},
author = {Wang, Lin Jun, Xie, You Xiang, Wei, Zhou Chao, Peng, Jian},
journal = {Kybernetika},
keywords = {absolute synchronization; delay; linear stability; neural network},
language = {eng},
number = {5},
pages = {800-813},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability analysis and absolute synchronization of a three-unit delayed neural network},
url = {http://eudml.org/doc/276069},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Wang, Lin Jun
AU - Xie, You Xiang
AU - Wei, Zhou Chao
AU - Peng, Jian
TI - Stability analysis and absolute synchronization of a three-unit delayed neural network
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 5
SP - 800
EP - 813
AB - In this paper, we consider a three-unit delayed neural network system, investigate the linear stability, and obtain some sufficient conditions ensuring the absolute synchronization of the system by the Lyapunov function. Numerical simulations show that the theoretically predicted results are in excellent agreement with the numerically observed behavior.
LA - eng
KW - absolute synchronization; delay; linear stability; neural network
UR - http://eudml.org/doc/276069
ER -
References
top- Albertini, F., Alessandro, D., 10.1109/81.847877, IEEE Trans. Circuits Syst I. 47 (2000), 723-729. DOI10.1109/81.847877
- Bélair, J., Campbell, S. A., Driessche, P. van den, 10.1137/s0036139994274526, SIAM J. Appl. Math. 56 (1996), 245-255. MR1372899DOI10.1137/s0036139994274526
- Bélair, J., 10.1007/bf01049141, J. Dynam. Dif. Equns. 5 (1993), 603-623. Zbl0796.34063MR1250263DOI10.1007/bf01049141
- Bélair, J., Campbell, S. A., 10.1137/s0036139993248853, SIAM J. Appl. Math. 54 (1994), 1402-1424. Zbl0809.34077MR1293106DOI10.1137/s0036139993248853
- Beuter, A., Belair, J., Labrie, C., 10.1016/s0092-8240(05)80238-1, Bull. Math. Biol. 55 (1993), 525-541. DOI10.1016/s0092-8240(05)80238-1
- Campbell, S. A., Ruan, S., Wolkowicz, G. S. K., Wu, J., Stability and bifurcation of a simple neural network with multiple time delays., Fields Institute Communications, vol. 21, American Mathematical Society, Providence, RI, 1998, pp. 65-79. MR1662603
- Chen, Y., Huang, Y., Wu, J., 10.1090/s0002-9939-00-05635-5, Proc. Amer. Math. Soc. 128 (2000), 2365-2371. Zbl0945.34056MR1709744DOI10.1090/s0002-9939-00-05635-5
- Chen, Y., Lü, J. H., Lin, Z. L., 10.1016/j.automatica.2013.02.021, Automatica 49 (2013), 1768-1775. MR3049226DOI10.1016/j.automatica.2013.02.021
- Cushing, J. M., 10.1007/978-3-642-93073-7, Lecture Notes in Biomath, vol. 20, Springer, New York 1977. DOI10.1007/978-3-642-93073-7
- Dhamala, M., Jirsa, V., Ding, M., 10.1103/physrevlett.92.074104, Phys. Rev. Lett. 92 (2004), 74-104. DOI10.1103/physrevlett.92.074104
- Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H. O., 10.1007/978-1-4612-4206-2, Springer Verlag, New York 1995. MR1345150DOI10.1007/978-1-4612-4206-2
- ., P., Driessche, Zou, X., 10.1137/s0036139997321219, SIAM J. Appl. Math. 58 (1998), 1878-1890. MR1638696DOI10.1137/s0036139997321219
- Faria, T., 10.1006/jdeq.2000.3881, J. Diff. Equns. 168 (2000), 129-149. Zbl0961.92002MR1801347DOI10.1006/jdeq.2000.3881
- Faria, T., Magalhes, L. T., 10.1006/jdeq.1995.1144, J. Diff. Equations. 122 (1995), 181-200. MR1355888DOI10.1006/jdeq.1995.1144
- Gopalsamy, K., Leung, I., 10.1016/0167-2789(95)00203-0, Physica D. 89 (1996), 395-426. MR1369242DOI10.1016/0167-2789(95)00203-0
- Hale, J., Theory of Functional Differential Equations., Springer, New York 1997. Zbl0662.34064MR0508721
- Hale, J., Kocak, H., Dynamics and Bifurcations., Springer, New York 1991. Zbl0745.58002MR1138981
- Hale, J., Lunel, S. V., 10.1007/978-1-4612-4342-7, Springer, New York 1993. Zbl0787.34002MR1243878DOI10.1007/978-1-4612-4342-7
- Hirsch, M. W., 10.1016/0893-6080(89)90018-x, Neural Networks 2 (1989), 331-349. DOI10.1016/0893-6080(89)90018-x
- Hopfield, J., 10.1073/pnas.81.10.3088, Proc. Natl. Acad. Sci. USA 81 (1994), 3088-3092. DOI10.1073/pnas.81.10.3088
- Huang, L., Wu, J., Dynamics of inhibitory artificial neural networks with threshold nonlinearity., Fields Ins. Commun. 29 (2001), 235-243. Zbl0973.92002MR1821784
- Karimi, H. R., Gao, H. J., 10.1109/tsmcb.2009.2024408, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 40 (2010), 173-185. DOI10.1109/tsmcb.2009.2024408
- Liu, Y. R., Wang, Z. D., Liang, J. L., 10.1109/tnn.2009.2016210, IEEE Transactions on Neural Networks 20 (2009), 1102-1116. DOI10.1109/tnn.2009.2016210
- Lü, J. H., Chen, G. R., 10.1109/tac.2005.849233, IEEE Trans. Automat. Control 50 (2005), 6, 841-846. MR2142000DOI10.1109/tac.2005.849233
- Marcus, C. M., Westervelt, R. M., 10.1103/physreva.39.347, Phys. Rev. A. 39 (1989), 347-359. MR0978323DOI10.1103/physreva.39.347
- Niebur, E., Schuster, H., Kammen, D., 10.1103/physrevlett.67.2753, Phys. Rev. Lett. 67 (1991), 2753-2756. DOI10.1103/physrevlett.67.2753
- Rosenblum, M. G., Pikovsky, A. S., 10.1103/physrevlett.92.114102, Phys. Rev. Lett. 92 (2004), 102-114. DOI10.1103/physrevlett.92.114102
- Ruan, S., Wei, J., On the zeros of transcendental functions with applications to stability of delayed differential equations with two delays, Dyn., Discrete Impuls Syst Ser A: Math. Anal. 10 (2003), 63-74. MR2008751
- Wu, J., 10.1515/9783110879971, Walter de Cruyter, Berlin 2001. Zbl0977.34069MR1834537DOI10.1515/9783110879971
- Wu, J., 10.1515/9783110879971, Trans. Amer. Math. Soc. 350 (1998), 4799-4838. Zbl0905.34034MR1451617DOI10.1515/9783110879971
- Yeung, M., Strogatz, S., 10.1103/physrevlett.82.648, Phys. Rev. Lett. 82 (1999), 648-651. MR2699004DOI10.1103/physrevlett.82.648
- Zhou, J., Lu, J. A., Lü, J. H., 10.1109/tac.2006.872760, IEEE Trans. Automat. Control 51 (2006), 4, 652-656. MR2228029DOI10.1109/tac.2006.872760
Citations in EuDML Documents
top- Manchun Tan, Desheng Xu, Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays
- Lingchun Li, Guangming Zhang, Meiying Ou, Yujie Wang, sliding mode control for Markov jump systems with interval time-varying delays and general transition probabilities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.