Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
Archivum Mathematicum (2018)
- Volume: 054, Issue: 4, page 205-226
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCanarutto, Daniel. "Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields." Archivum Mathematicum 054.4 (2018): 205-226. <http://eudml.org/doc/294755>.
@article{Canarutto2018,
abstract = {An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field $\{\scriptstyle X\}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about $\{\scriptstyle X\}$, and fulfill natural mutual relations.},
author = {Canarutto, Daniel},
journal = {Archivum Mathematicum},
keywords = {Lie derivatives of spinors; Lie derivatives of spinor connections; deformed tetrad gravity},
language = {eng},
number = {4},
pages = {205-226},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields},
url = {http://eudml.org/doc/294755},
volume = {054},
year = {2018},
}
TY - JOUR
AU - Canarutto, Daniel
TI - Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 4
SP - 205
EP - 226
AB - An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field ${\scriptstyle X}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about ${\scriptstyle X}$, and fulfill natural mutual relations.
LA - eng
KW - Lie derivatives of spinors; Lie derivatives of spinor connections; deformed tetrad gravity
UR - http://eudml.org/doc/294755
ER -
References
top- Antipin, O., Mojaza, M., Sannino, F., 10.1103/PhysRevD.89.085015, Phys. Rev. D 89 (8) (2014), 085015 arXiv:1310.0957v3. Published 7 April 2014. (2014) DOI10.1103/PhysRevD.89.085015
- Canarutto, D., 10.1063/1.532541, J. Math. Phys. 39 (9) (1998), 4814–4823. (1998) MR1643353DOI10.1063/1.532541
- Canarutto, D., 10.1023/A:1006455216170, Acta Appl. Math. 62 (2) (2000), 187–224. (2000) MR1792110DOI10.1023/A:1006455216170
- Canarutto, D., 10.1142/S0219887807002417, Int. J. Geom. Methods Mod. Phys. 4 (6) (2007), 1005–1040, arXiv:math-ph/0703003. (2007) MR2352863DOI10.1142/S0219887807002417
- Canarutto, D., 10.1142/S0219887809003801, Int. J. Geom. Methods Mod. Phys. 6 (5) (2009), 805–824, arXiv:0812.0651v1 [math-ph]. (2009) MR2555478DOI10.1142/S0219887809003801
- Canarutto, D., 10.1142/S0219887811005403, Int. J. Geom. Methods Mod. Phys. 8 (4) (2011), 797–819, arXiv:1009.2255v1 [math-ph]. (2011) MR2817601DOI10.1142/S0219887811005403
- Canarutto, D., 10.1063/1.3695348, J. Math. Phys. 53 (3) (2012), http://dx.doi.org/10.1063/1.3695348 (24 pages). (2012) MR2798214DOI10.1063/1.3695348
- Canarutto, D., 10.1142/S0219887814600160, Int. J. Geom. Methods Mod. Phys. 11 (2014), DOI: http://dx.doi.org/10.1142/S0219887814600160, arXiv:1404.5054 [math-ph]. (2014) MR3249638DOI10.1142/S0219887814600160
- Canarutto, D., 10.1007/s00023-014-0383-8, Ann. Henri Poincaré 16 (11) (2015), 2695–2711. (2015) MR3411744DOI10.1007/s00023-014-0383-8
- Canarutto, D., 10.1016/j.geomphys.2016.03.027, J. Geom. Phys. 106 (2016), 192–204, arXiv:1512.02584 [math-ph]. (2016) MR3508914DOI10.1016/j.geomphys.2016.03.027
- Cartan, É., Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion, C. R. Acad. Sci. Paris 174 (1922), 593–595. (1922)
- Cartan, É., 10.24033/asens.751, rt I, Ann. Sci. École Norm. Sup. 40 (1923), 325–412, and ibid. 41 (1924), 1–25; Part II: ibid. 42 (1925), 17–88. (1923) MR1509255DOI10.24033/asens.751
- Corianò, C., Rose, L. Delle, Quintavalle, A., Serino, M., Dilaton interactions and the anomalous breaking of scale invariance of the standard model, J. High Energy Phys. 77 (2013), 42 pages. (2013) MR3083333
- Faddeev, L.D., An alternative interpretation of the Weinberg-Salam model, Progress in High Energy Physics and Nuclear Safety (Begun, V., Jenkovszky, L., Polański, A., eds.), NATO Science for Peace and Security Series B: Physics and Biophysics, Springer, 2009, arXiv:hep-th/0811.3311v2. (2009)
- Fatibene, L., Ferraris, M., Francaviglia, M., Godina, M., A geometric definition of Lie derivative for spinor fields, Proceedings of the conference “Differential Geometry and Applications”, Masaryk University, Brno, 1996, pp. 549–557. (1996) MR1406374
- Ferraris, M., Kijowski, J., 10.1007/BF00756195, Gen. Relativity Gravitation 14 (1) (1982), 37–47. (1982) MR0650163DOI10.1007/BF00756195
- Foot, R., Kobakhidze, A., McDonald, K.L., 10.1140/epjc/s10052-010-1368-5, Eur. Phys. J. C 68 (2010), 421–424, arXiv:0812.1604v2. (2010) DOI10.1140/epjc/s10052-010-1368-5
- Frölicher, A., Nijenhuis, A., Theory of vector valued differential forms, I, Indag. Math. 18 (1956). (1956) MR0082554
- Godina, M., Matteucci, P., 10.1142/S0219887805000624, Int. J. Geom. Methods Mod. Phys. 2 (2005), 159–188. (2005) MR2140175DOI10.1142/S0219887805000624
- Hawking, S.W., Ellis, G.F.R., The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. (1973) MR0424186
- Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y., 10.1016/0370-1573(94)00111-F, Phys. Rep 258 (1995), 1–171. (1995) MR1340371DOI10.1016/0370-1573(94)00111-F
- Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M., General relativity with spin and torsion: Foundations and prospects, 48 (3) (1976), 393–416. (1976) MR0439001
- Hehl, W., 10.1007/BF00759853, Gen. Relativity Gravitation 4 (1973), 333–349. (1973) MR0403543DOI10.1007/BF00759853
- Hehl, W., 10.1007/BF02451393, Gen. Relativity Gravitation 5 (1974). (1974) MR0416462DOI10.1007/BF02451393
- Helfer, A.D., Spinor Lie derivatives and Fermion stress-energies, Proc. R. Soc. A (to appear); arXiv:1602.00632 [hep-th]. MR3471678
- Henneaux, M., 10.1007/BF00784663, Gen. Relativity Gravitation 9 (11) (1978), 1031–1045. (1978) MR0515804DOI10.1007/BF00784663
- Ilderton, A., Lavelle, M., McMullan, D., 10.1088/1751-8113/43/31/312002, J. Phys. A 43 (31) (2010), arXiv:1002.1170 [hep-th]. (2010) MR2665667DOI10.1088/1751-8113/43/31/312002
- Janyška, J., Modugno, M., 10.1088/0305-4470/35/40/304, J. Phys. A 35 (2002). (2002) MR1947539DOI10.1088/0305-4470/35/40/304
- Janyška, J., Modugno, M., 10.1142/S0219887806001351, Int. J. Geom. Methods Mod. Phys. 3 (4) (2006), 1–36, arXiv:math-ph/0507070v1. (2006) MR2237902DOI10.1142/S0219887806001351
- Janyška, J., Modugno, M., Vitolo, R., 10.1007/s10440-009-9505-6, Acta Appl. Math. 110 (3) (2010), 1249–1276, arXiv:0710.1313v1. (2010) Zbl1208.15021MR2639169DOI10.1007/s10440-009-9505-6
- Kijowski, J., 10.1023/A:1010268818255, Gen. Relativity Gravitation 29 (1997), 307–343. (1997) MR1439857DOI10.1023/A:1010268818255
- Kosmann, V., 10.1007/BF02428822, Ann. Mat. Pura Appl. 91 (1971), 317–395. (1971) MR0312413DOI10.1007/BF02428822
- Landau, L., Lifchitz, E., Théorie du champ, Mir, Moscou, 1968. (1968) MR0218091
- Lavelle, M., McMullan, D., 10.1016/0370-2693(95)00046-N, Phys. Lett. B 347 (1995), 89–94, arXiv:9412145v1. (1995) DOI10.1016/0370-2693(95)00046-N
- Leão, R.F., Rodrigues, Jr., W.A., Wainer, S.A., Concept of Lie Derivative of Spinor Fields. A Geometric Motivated Approach, Adv. Appl. Clifford Algebras (2015), arXiv:1411.7845 [math-ph]. (2015) MR3619360
- Mangiarotti, L., Modugno, M., Fibered spaces, jet spaces and connections for field theory, Proc. Int. Meeting on Geom. and Phys., Pitagora Ed., Bologna, 1983, pp. 135–165. (1983) MR0760841
- Michor, P.W., Frölicher-Nijenhuis bracket, Encyclopaedia of Mathematics (Hazewinkel, M., ed.), Springer, 2001. (2001)
- Modugno, M., Saller, D., Tolksdorf, J., 10.1063/1.2199068, J. Math. Phys. 47 (2006), 062903. (2006) MR2239972DOI10.1063/1.2199068
- Novello, M., Bittencourt, E., 10.1103/PhysRevD.86.063510, Phys. Rev. D (2012), 063510, arXiv:1209.4871v1. (2012) DOI10.1103/PhysRevD.86.063510
- Ohanian, H.C., 10.1007/s10714-016-2023-8, Gen. Relativity Gravitation 48 (3) (2016), arXiv:1502.00020 [gr-qc]. (2016) MR3456955DOI10.1007/s10714-016-2023-8
- Padmanabhan, T., 10.1007/s10714-014-1673-7, Gen. Relativity Gravitation 46 (2014). (2014) MR3177977DOI10.1007/s10714-014-1673-7
- Penrose, R., Rindler, W., Spinors and space-time. I: Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984. (1984) MR0908073
- Penrose, R., Rindler, W., Spinors and space-time. II: Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1988. (1988) MR0990891
- Pervushinand, V.N., Arbuzov, A.B., Barbashov, B.M., Nazmitdinov, R.G., Borowiec, A., Pichugin, K.N., Zakharov, A.F., 10.1007/s10714-012-1423-7, Gen. Relativity Gravitation 44 (11) (2012), 2745–2783. (2012) MR2989574DOI10.1007/s10714-012-1423-7
- Pons, J.M., 10.1063/1.3532941, J. Math. Phys. 52 (2011), 012904, http://dx.doi.org/10.1063/1.3532941. (2011) MR2791139DOI10.1063/1.3532941
- Popławsky, N.J., 10.1142/S0217732309030151, Modern Phys. Lett. A 24 (6) (2009), 431–442. DOI: http://dx.doi.org/10.1142/S0217732309030151 (2009) MR2510622DOI10.1142/S0217732309030151
- Ryskin, M.G., Shuvaev, A.G., 10.1134/S1063778810060104, Phys. Atomic Nuclei 73 (2010), 965–970, arXiv:0909.3374v1. (2010) DOI10.1134/S1063778810060104
- Saller, D., Vitolo, R., 10.1063/1.1288795, J. Math. Phys. 41 (10) (2000), 6824–6842. (2000) MR1781409DOI10.1063/1.1288795
- Sciama, D.W., 10.1017/S030500410003320X, Math. Proc. Cambridge Philos. Soc. 54 (1) (1958), 72–80. (1958) MR0094208DOI10.1017/S030500410003320X
- Trautman, A., Einstein-Cartan theory, Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G.L., Tsou, S.T., eds.), vol. 2, Elsevier, Oxford, 2006, pp. 189–195. (2006) MR2238867
- Vitolo, R., Quantum structures in Galilei general relativity, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 239–257. (1999) MR1718181
- Vitolo, R, 10.1023/A:1007624902983, Lett. Math. Phys. 51 (2000), 119–133. (2000) Zbl0977.83009MR1774641DOI10.1023/A:1007624902983
- Yano,, Lie Derivatives and its Applications, North-Holland, Amsterdam, 1955. (1955)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.