Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields

Daniel Canarutto

Archivum Mathematicum (2018)

  • Volume: 054, Issue: 4, page 205-226
  • ISSN: 0044-8753

Abstract

top
An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle S M with 2-dimensional fibers, called a 2 -spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space M to the 2 -spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field X : M M , turn out to be well-defined without making any special assumption about X , and fulfill natural mutual relations.

How to cite

top

Canarutto, Daniel. "Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields." Archivum Mathematicum 054.4 (2018): 205-226. <http://eudml.org/doc/294755>.

@article{Canarutto2018,
abstract = {An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field $\{\scriptstyle X\}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about $\{\scriptstyle X\}$, and fulfill natural mutual relations.},
author = {Canarutto, Daniel},
journal = {Archivum Mathematicum},
keywords = {Lie derivatives of spinors; Lie derivatives of spinor connections; deformed tetrad gravity},
language = {eng},
number = {4},
pages = {205-226},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields},
url = {http://eudml.org/doc/294755},
volume = {054},
year = {2018},
}

TY - JOUR
AU - Canarutto, Daniel
TI - Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 4
SP - 205
EP - 226
AB - An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field ${\scriptstyle X}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about ${\scriptstyle X}$, and fulfill natural mutual relations.
LA - eng
KW - Lie derivatives of spinors; Lie derivatives of spinor connections; deformed tetrad gravity
UR - http://eudml.org/doc/294755
ER -

References

top
  1. Antipin, O., Mojaza, M., Sannino, F., 10.1103/PhysRevD.89.085015, Phys. Rev. D 89 (8) (2014), 085015 arXiv:1310.0957v3. Published 7 April 2014. (2014) DOI10.1103/PhysRevD.89.085015
  2. Canarutto, D., 10.1063/1.532541, J. Math. Phys. 39 (9) (1998), 4814–4823. (1998) MR1643353DOI10.1063/1.532541
  3. Canarutto, D., 10.1023/A:1006455216170, Acta Appl. Math. 62 (2) (2000), 187–224. (2000) MR1792110DOI10.1023/A:1006455216170
  4. Canarutto, D., 10.1142/S0219887807002417, Int. J. Geom. Methods Mod. Phys. 4 (6) (2007), 1005–1040, arXiv:math-ph/0703003. (2007) MR2352863DOI10.1142/S0219887807002417
  5. Canarutto, D., 10.1142/S0219887809003801, Int. J. Geom. Methods Mod. Phys. 6 (5) (2009), 805–824, arXiv:0812.0651v1 [math-ph]. (2009) MR2555478DOI10.1142/S0219887809003801
  6. Canarutto, D., 10.1142/S0219887811005403, Int. J. Geom. Methods Mod. Phys. 8 (4) (2011), 797–819, arXiv:1009.2255v1 [math-ph]. (2011) MR2817601DOI10.1142/S0219887811005403
  7. Canarutto, D., 10.1063/1.3695348, J. Math. Phys. 53 (3) (2012), http://dx.doi.org/10.1063/1.3695348 (24 pages). (2012) MR2798214DOI10.1063/1.3695348
  8. Canarutto, D., 10.1142/S0219887814600160, Int. J. Geom. Methods Mod. Phys. 11 (2014), DOI: http://dx.doi.org/10.1142/S0219887814600160, arXiv:1404.5054 [math-ph]. (2014) MR3249638DOI10.1142/S0219887814600160
  9. Canarutto, D., 10.1007/s00023-014-0383-8, Ann. Henri Poincaré 16 (11) (2015), 2695–2711. (2015) MR3411744DOI10.1007/s00023-014-0383-8
  10. Canarutto, D., 10.1016/j.geomphys.2016.03.027, J. Geom. Phys. 106 (2016), 192–204, arXiv:1512.02584 [math-ph]. (2016) MR3508914DOI10.1016/j.geomphys.2016.03.027
  11. Cartan, É., Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion, C. R. Acad. Sci. Paris 174 (1922), 593–595. (1922) 
  12. Cartan, É., 10.24033/asens.751, rt I, Ann. Sci. École Norm. Sup. 40 (1923), 325–412, and ibid. 41 (1924), 1–25; Part II: ibid. 42 (1925), 17–88. (1923) MR1509255DOI10.24033/asens.751
  13. Corianò, C., Rose, L. Delle, Quintavalle, A., Serino, M., Dilaton interactions and the anomalous breaking of scale invariance of the standard model, J. High Energy Phys. 77 (2013), 42 pages. (2013) MR3083333
  14. Faddeev, L.D., An alternative interpretation of the Weinberg-Salam model, Progress in High Energy Physics and Nuclear Safety (Begun, V., Jenkovszky, L., Polański, A., eds.), NATO Science for Peace and Security Series B: Physics and Biophysics, Springer, 2009, arXiv:hep-th/0811.3311v2. (2009) 
  15. Fatibene, L., Ferraris, M., Francaviglia, M., Godina, M., A geometric definition of Lie derivative for spinor fields, Proceedings of the conference “Differential Geometry and Applications”, Masaryk University, Brno, 1996, pp. 549–557. (1996) MR1406374
  16. Ferraris, M., Kijowski, J., 10.1007/BF00756195, Gen. Relativity Gravitation 14 (1) (1982), 37–47. (1982) MR0650163DOI10.1007/BF00756195
  17. Foot, R., Kobakhidze, A., McDonald, K.L., 10.1140/epjc/s10052-010-1368-5, Eur. Phys. J. C 68 (2010), 421–424, arXiv:0812.1604v2. (2010) DOI10.1140/epjc/s10052-010-1368-5
  18. Frölicher, A., Nijenhuis, A., Theory of vector valued differential forms, I, Indag. Math. 18 (1956). (1956) MR0082554
  19. Godina, M., Matteucci, P., 10.1142/S0219887805000624, Int. J. Geom. Methods Mod. Phys. 2 (2005), 159–188. (2005) MR2140175DOI10.1142/S0219887805000624
  20. Hawking, S.W., Ellis, G.F.R., The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. (1973) MR0424186
  21. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y., 10.1016/0370-1573(94)00111-F, Phys. Rep 258 (1995), 1–171. (1995) MR1340371DOI10.1016/0370-1573(94)00111-F
  22. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M., General relativity with spin and torsion: Foundations and prospects, 48 (3) (1976), 393–416. (1976) MR0439001
  23. Hehl, W., 10.1007/BF00759853, Gen. Relativity Gravitation 4 (1973), 333–349. (1973) MR0403543DOI10.1007/BF00759853
  24. Hehl, W., 10.1007/BF02451393, Gen. Relativity Gravitation 5 (1974). (1974) MR0416462DOI10.1007/BF02451393
  25. Helfer, A.D., Spinor Lie derivatives and Fermion stress-energies, Proc. R. Soc. A (to appear); arXiv:1602.00632 [hep-th]. MR3471678
  26. Henneaux, M., 10.1007/BF00784663, Gen. Relativity Gravitation 9 (11) (1978), 1031–1045. (1978) MR0515804DOI10.1007/BF00784663
  27. Ilderton, A., Lavelle, M., McMullan, D., 10.1088/1751-8113/43/31/312002, J. Phys. A 43 (31) (2010), arXiv:1002.1170 [hep-th]. (2010) MR2665667DOI10.1088/1751-8113/43/31/312002
  28. Janyška, J., Modugno, M., 10.1088/0305-4470/35/40/304, J. Phys. A 35 (2002). (2002) MR1947539DOI10.1088/0305-4470/35/40/304
  29. Janyška, J., Modugno, M., 10.1142/S0219887806001351, Int. J. Geom. Methods Mod. Phys. 3 (4) (2006), 1–36, arXiv:math-ph/0507070v1. (2006) MR2237902DOI10.1142/S0219887806001351
  30. Janyška, J., Modugno, M., Vitolo, R., 10.1007/s10440-009-9505-6, Acta Appl. Math. 110 (3) (2010), 1249–1276, arXiv:0710.1313v1. (2010) Zbl1208.15021MR2639169DOI10.1007/s10440-009-9505-6
  31. Kijowski, J., 10.1023/A:1010268818255, Gen. Relativity Gravitation 29 (1997), 307–343. (1997) MR1439857DOI10.1023/A:1010268818255
  32. Kosmann, V., 10.1007/BF02428822, Ann. Mat. Pura Appl. 91 (1971), 317–395. (1971) MR0312413DOI10.1007/BF02428822
  33. Landau, L., Lifchitz, E., Théorie du champ, Mir, Moscou, 1968. (1968) MR0218091
  34. Lavelle, M., McMullan, D., 10.1016/0370-2693(95)00046-N, Phys. Lett. B 347 (1995), 89–94, arXiv:9412145v1. (1995) DOI10.1016/0370-2693(95)00046-N
  35. Leão, R.F., Rodrigues, Jr., W.A., Wainer, S.A., Concept of Lie Derivative of Spinor Fields. A Geometric Motivated Approach, Adv. Appl. Clifford Algebras (2015), arXiv:1411.7845 [math-ph]. (2015) MR3619360
  36. Mangiarotti, L., Modugno, M., Fibered spaces, jet spaces and connections for field theory, Proc. Int. Meeting on Geom. and Phys., Pitagora Ed., Bologna, 1983, pp. 135–165. (1983) MR0760841
  37. Michor, P.W., Frölicher-Nijenhuis bracket, Encyclopaedia of Mathematics (Hazewinkel, M., ed.), Springer, 2001. (2001) 
  38. Modugno, M., Saller, D., Tolksdorf, J., 10.1063/1.2199068, J. Math. Phys. 47 (2006), 062903. (2006) MR2239972DOI10.1063/1.2199068
  39. Novello, M., Bittencourt, E., 10.1103/PhysRevD.86.063510, Phys. Rev. D (2012), 063510, arXiv:1209.4871v1. (2012) DOI10.1103/PhysRevD.86.063510
  40. Ohanian, H.C., 10.1007/s10714-016-2023-8, Gen. Relativity Gravitation 48 (3) (2016), arXiv:1502.00020 [gr-qc]. (2016) MR3456955DOI10.1007/s10714-016-2023-8
  41. Padmanabhan, T., 10.1007/s10714-014-1673-7, Gen. Relativity Gravitation 46 (2014). (2014) MR3177977DOI10.1007/s10714-014-1673-7
  42. Penrose, R., Rindler, W., Spinors and space-time. I: Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984. (1984) MR0908073
  43. Penrose, R., Rindler, W., Spinors and space-time. II: Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1988. (1988) MR0990891
  44. Pervushinand, V.N., Arbuzov, A.B., Barbashov, B.M., Nazmitdinov, R.G., Borowiec, A., Pichugin, K.N., Zakharov, A.F., 10.1007/s10714-012-1423-7, Gen. Relativity Gravitation 44 (11) (2012), 2745–2783. (2012) MR2989574DOI10.1007/s10714-012-1423-7
  45. Pons, J.M., 10.1063/1.3532941, J. Math. Phys. 52 (2011), 012904, http://dx.doi.org/10.1063/1.3532941. (2011) MR2791139DOI10.1063/1.3532941
  46. Popławsky, N.J., 10.1142/S0217732309030151, Modern Phys. Lett. A 24 (6) (2009), 431–442. DOI: http://dx.doi.org/10.1142/S0217732309030151 (2009) MR2510622DOI10.1142/S0217732309030151
  47. Ryskin, M.G., Shuvaev, A.G., 10.1134/S1063778810060104, Phys. Atomic Nuclei 73 (2010), 965–970, arXiv:0909.3374v1. (2010) DOI10.1134/S1063778810060104
  48. Saller, D., Vitolo, R., 10.1063/1.1288795, J. Math. Phys. 41 (10) (2000), 6824–6842. (2000) MR1781409DOI10.1063/1.1288795
  49. Sciama, D.W., 10.1017/S030500410003320X, Math. Proc. Cambridge Philos. Soc. 54 (1) (1958), 72–80. (1958) MR0094208DOI10.1017/S030500410003320X
  50. Trautman, A., Einstein-Cartan theory, Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G.L., Tsou, S.T., eds.), vol. 2, Elsevier, Oxford, 2006, pp. 189–195. (2006) MR2238867
  51. Vitolo, R., Quantum structures in Galilei general relativity, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 239–257. (1999) MR1718181
  52. Vitolo, R, 10.1023/A:1007624902983, Lett. Math. Phys. 51 (2000), 119–133. (2000) Zbl0977.83009MR1774641DOI10.1023/A:1007624902983
  53. Yano,, Lie Derivatives and its Applications, North-Holland, Amsterdam, 1955. (1955) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.