Quantum structures in Galilei general relativity

Raffaele Vitolo

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 70, Issue: 3, page 239-257
  • ISSN: 0246-0211

How to cite

top

Vitolo, Raffaele. "Quantum structures in Galilei general relativity." Annales de l'I.H.P. Physique théorique 70.3 (1999): 239-257. <http://eudml.org/doc/76814>.

@article{Vitolo1999,
author = {Vitolo, Raffaele},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Galilei general relativity; particle mechanics; jets; nonlinear connections; cosymplectic forms; cohomology; existence of quantum structures; curved spacetime},
language = {eng},
number = {3},
pages = {239-257},
publisher = {Gauthier-Villars},
title = {Quantum structures in Galilei general relativity},
url = {http://eudml.org/doc/76814},
volume = {70},
year = {1999},
}

TY - JOUR
AU - Vitolo, Raffaele
TI - Quantum structures in Galilei general relativity
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 3
SP - 239
EP - 257
LA - eng
KW - Galilei general relativity; particle mechanics; jets; nonlinear connections; cosymplectic forms; cohomology; existence of quantum structures; curved spacetime
UR - http://eudml.org/doc/76814
ER -

References

top
  1. [1] M. Le Bellac and J.-M. Lévy-Leblond, Nuovo Cimento14 B, 217 (1973). 
  2. [2] D. Canarutto, A. Jadczyk and M. Modugno, Quantum mechanics of a spin particle in a curved spacetime with absolute time, Rep. on Math. Phys., 36, 1 (1995), 95-140. Zbl0888.53052MR1377229
  3. [3] C. Duval, G. Gibbons and P. Horváthy, Phys. Rev. D, 43, 3907 (1991). MR1111411
  4. [4] C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev.D, 31, n. 8 (1985), 1841-1853. MR787753
  5. [5] C. Duval and H.P. Künzle, Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, G.R.G., 16, n. 4 (1984), 333-347. MR741410
  6. [6] P.L. García, The Poincaré-Cartan Invariant in the Calculus of Variations, Symposia Mathematica, 14 (1974), 219-246. Zbl0303.53040MR406246
  7. [7] P.L. García, Cuantificion geometrica, Memorias de la R. Acad. de Ciencias de Madrid, XI, Madrid, 1979. 
  8. [8] M. Göckeler and T. Schücker, Differential geometry, gauge theories and gravity, Cambridge Univ. Press, Cambridge, 1987. Zbl0649.53001MR923534
  9. [9] A. Jadczyk and M. Modugno, A scheme for Galilei general relativistic quantum mechanics, in Proceedings of the 10th Italian Conference on General Relativity and Gravitational Physics, World Scientific, New York, 1993. Zbl1004.83518
  10. [10] A. Jadczyk and M. Modugno, Galilei General Relativistic Quantum Mechanics, 1993, book pre-print. MR1212817
  11. [11] J. Janyška, Remarks on symplectic and contact 2-forms in relativistic theories, Boll. U.M.I., 7 (1994), 587-616. Zbl0857.53027MR1351076
  12. [12] J. Janyška and M. Modugno, Classical particle phase space in general relativity, Proc. "Diff. Geom. and Appl.", Brno, 1995. Zbl0862.53024MR1406377
  13. [13] J. Janyška and M. Modugno, Quantisable functions in general relativity, Proc. "Diff. Oper. and Math. Phys.", Coimbra; World Scientific, 1995. Zbl1128.81311
  14. [14] B. Kostant, Quantization and unitary representations, Lectures in Modern Analysis and Applications III, Springer-Verlag, 170 (1970), 87-207. Zbl0223.53028MR294568
  15. [15] K. Kuchař, Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev.D, 22, n. 6 (1980), 1285-1299. MR586704
  16. [16] H.P. Künzle, Gen. Rel. Grav.7, 445 (1976). 
  17. [17] H.P. Künzle, General covariance and minimal gravitational coupling in Newtonian spacetime, in Geometrodynamics Proceedings (1983), edit. A. Prastaro, Tecnoprint, Bologna1984, 37-48. MR823714
  18. [18] L. Mangiarotti and M. Modugno, Fibered Spaces, Jet Spaces and Connections for Field Theories, in Proceed. of the Int. Meet. on Geometry and Physics, Pitagora Editrice, Bologna, 1983, 135-165. Zbl0539.53026MR760841
  19. [19] M. Modugno and R. Vitolo, Quantum connection and Poincaré-Cartan form, Atti del convegno in onore di A. Lichnerowicz, Frascati, octobre 1995; ed. G. Ferrarese, Pitagora, Bologna. 
  20. [20] E. Prugovečki, Principles of quantum general relativity, World Scientific, Singapore, 1995. MR1330224
  21. [21] E. Schmutzer and J. Plebanski, Quantum mechanics in non-inertial frames of reference, Fortschritte der Physik, 25 (1977), 37-82. MR438967
  22. [22] J. Sniaticki, Geometric quantization and quantum mechanics, Springer-Verlag, New York1980. Zbl0429.58007
  23. [23] J.-M. Souriau, Structures des systèmes dynamiques, Dunod, Paris1970. Zbl0186.58001MR260238
  24. [24] A. Trautman, Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sc. Paris, t. 257 (1963), 617-620. Zbl0115.43105MR154718
  25. [25] A. Trautman, Comparison of Newtonian and relativistic theories of space-time, in Perspectives in geometry and relativity (Essays in Honour of V. Hlavaty), n. 42, Indiana Univ. press, 1966, 413-425. MR202450
  26. [26] W.M. Tulczyjew, An intrinsic formulation of nonrelativistic analytical mechanics and wawe mechanics, J. Geom. Phys., 2, n. 3 (1985), 93-105. Zbl0601.70001MR851123
  27. [27] R. Vitolo, Spherical symmetry in classical and quantum Galilei general relativity, Annales de l'Institut Henri Poincaré, 64, n. 2 (1996). Zbl0854.53071MR1386216
  28. [28] R. Vitolo, Bicomplessi lagrangiani ed applicazioni alla meccanica relativistica classica e quantistica, PhD Thesis, Florence, 1996. 
  29. [29] R. Vitolo, Quantum structures in general relativistic theories, Proc. of the XII It. Conf. on G.R. and Grav. Phys., Roma, 1996, World Scientific. MR1609364
  30. [30] R.O. Wells, Differential Analysis on Complex Manifolds, GTM, n. 65, Springer-Verlag, Berlin, 1980. Zbl0435.32004MR608414
  31. [31] N. Woodhouse, Geometric quantization, Second Ed., Clarendon Press, Oxford1992. Zbl0747.58004MR1183739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.