On F-algebroids and Dubrovin’s duality

John Alexander Cruz Morales; Alexander Torres-Gomez

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 2, page 109-122
  • ISSN: 0044-8753

Abstract

top
In this note we introduce the concept of F-algebroid, and give its elementary properties and some examples. We provide a description of the almost duality for Frobenius manifolds, introduced by Dubrovin, in terms of a composition of two anchor maps of a unique cotangent F-algebroid.

How to cite

top

Cruz Morales, John Alexander, and Torres-Gomez, Alexander. "On F-algebroids and Dubrovin’s duality." Archivum Mathematicum 055.2 (2019): 109-122. <http://eudml.org/doc/294772>.

@article{CruzMorales2019,
abstract = {In this note we introduce the concept of F-algebroid, and give its elementary properties and some examples. We provide a description of the almost duality for Frobenius manifolds, introduced by Dubrovin, in terms of a composition of two anchor maps of a unique cotangent F-algebroid.},
author = {Cruz Morales, John Alexander, Torres-Gomez, Alexander},
journal = {Archivum Mathematicum},
keywords = {F-manifolds; Frobenius manifolds; Lie algebroids},
language = {eng},
number = {2},
pages = {109-122},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On F-algebroids and Dubrovin’s duality},
url = {http://eudml.org/doc/294772},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Cruz Morales, John Alexander
AU - Torres-Gomez, Alexander
TI - On F-algebroids and Dubrovin’s duality
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 109
EP - 122
AB - In this note we introduce the concept of F-algebroid, and give its elementary properties and some examples. We provide a description of the almost duality for Frobenius manifolds, introduced by Dubrovin, in terms of a composition of two anchor maps of a unique cotangent F-algebroid.
LA - eng
KW - F-manifolds; Frobenius manifolds; Lie algebroids
UR - http://eudml.org/doc/294772
ER -

References

top
  1. Audin, M., 10.1016/S0393-0440(97)00026-0, J. Geom. Phys. 25 (1–2) (1998), 183–204. (1998) MR1611969DOI10.1016/S0393-0440(97)00026-0
  2. Crainic, M., Fernandes, R.L., Lectures integrability Lie brackets, Geom. Topol. Monogr. 17 (2011), 1–107. (2011) MR2795150
  3. David, L., Strachan, I.A.B., 10.1016/j.aim.2010.11.006, Adv. Math. 226 (4) (2011), 4031–4060. (2011) MR2770440DOI10.1016/j.aim.2010.11.006
  4. Dotsenko, V., 10.1007/s10231-018-0787-z, Ann. Mat. Pura Appl. (4) 198 (2019), 517–527. (2019) MR3927168DOI10.1007/s10231-018-0787-z
  5. Dubrovin, B., Geometry of 2D topological field theories, Lecture Notes in Math., vol. 1620, Springer, 1996. (1996) Zbl0841.58065MR1397274
  6. Dubrovin, B., On almost duality for Frobenius manifolds, Amer. Math. Soc. Transl. 212 (2004), 75–132. (2004) MR2070050
  7. Dubrovin, B., WDVV Equations and Frobenius Manifolds, Encyclopedia of Mathematical Physics, vol. 1, Elsevier, 2006, pp. 438–447. (2006) 
  8. Dufour, J.P., Zung, N.T., Poisson Structures and Their Normal Forms, Birkhauser, 2000. (2000) MR2178041
  9. Fernandes, R.L., 10.1006/aima.2001.2070, Adv. Math. 170 (1) (2002), 119–179. (2002) MR1929305DOI10.1006/aima.2001.2070
  10. Hertling, C., Frobenius manifolds and moduli spaces for singularities, Cambridge University Press, 2004. (2004) MR1924259
  11. Hertling, C., Manin, Y., 10.1155/S1073792899000148, Internat. Math. Res. Notices 6 (1999), 277–286. (1999) Zbl0960.58003MR1680372DOI10.1155/S1073792899000148
  12. Hitchin, N., Frobenius manifolds, Gauge Theory and Symplectic Geometry, Springer, 1997. (1997) MR1461570
  13. Kodaira, K., Complex Manifolds and Deformation of Complex Structures, Springer, 2005. (2005) MR2109686
  14. Mackenzie, K.C.H., General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, 2005. (2005) Zbl1078.58011MR2157566
  15. Manetti, M., Lectures on deformation of complex manifolds, Rendiconti di Matematica 24 (2004), 1–183. (2004) MR2130146
  16. Manin, Y., Mirrors, functoriality, and derived geometry, arXiv:1708.02849. 
  17. Manin, Y., Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, Amer. Math. Soc. Colloq. Publ. 47 (1999), xiv+303 pp. (1999) Zbl0952.14032MR1702284
  18. Manin, Y., 10.1016/j.aim.2004.12.003, Adv. Math. 198 (1) (2005), 5–26. (2005) MR2183247DOI10.1016/j.aim.2004.12.003
  19. Manin, Y., Grothendieck-Verdier duality patterns in quantum algebra, Izv. Ross. Akad. Nauk Ser. Mat. 81 (4) (2017), 158–166. (2017) MR3682786
  20. Weinstein, A., 10.1023/A:1007657920231, Lett. Math. Phys. 52 (2000), 93–102. (2000) MR1800493DOI10.1023/A:1007657920231

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.