The universal Banach space with a -suppression unconditional basis
Taras O. Banakh; Joanna Garbulińska-Wegrzyn
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 2, page 195-206
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O., and Garbulińska-Wegrzyn, Joanna. "The universal Banach space with a $K$-suppression unconditional basis." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 195-206. <http://eudml.org/doc/294783>.
@article{Banakh2018,
abstract = {Using the technique of Fraïssé theory, for every constant $K\ge 1$, we construct a universal object $\mathbb \{U\}_K$ in the class of Banach spaces possessing a normalized $K$-suppression unconditional Schauder basis.},
author = {Banakh, Taras O., Garbulińska-Wegrzyn, Joanna},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$1$-suppression unconditional Schauder basis; rational spaces; isometry},
language = {eng},
number = {2},
pages = {195-206},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The universal Banach space with a $K$-suppression unconditional basis},
url = {http://eudml.org/doc/294783},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Banakh, Taras O.
AU - Garbulińska-Wegrzyn, Joanna
TI - The universal Banach space with a $K$-suppression unconditional basis
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 195
EP - 206
AB - Using the technique of Fraïssé theory, for every constant $K\ge 1$, we construct a universal object $\mathbb {U}_K$ in the class of Banach spaces possessing a normalized $K$-suppression unconditional Schauder basis.
LA - eng
KW - $1$-suppression unconditional Schauder basis; rational spaces; isometry
UR - http://eudml.org/doc/294783
ER -
References
top- Albiac F., Kalton N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, Cham, 2016. Zbl1094.46002MR3526021
- Fabián M., Halaba P., Hájek P., Montesinos Santalucía V., Pelant J., Zízler V., Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer, New York, 2001. MR1831176
- Fraïssé R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954), 35–182 (French). MR0069236
- Garbulińska-Wegrzyn J., 10.15352/bjma/1381782097, Banach J. Math. Anal. 8 (2014), no. 1, 211–220. MR3161692DOI10.15352/bjma/1381782097
- Gurariĭ V. I., Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Mat. Zh. 7 (1966), 1002–1013 (Russian). MR0200697
- Johnson W. B., Szankowski A., 10.4064/sm-58-1-91-97, Studia Math. 58 (1976), no. 1, 91–97. MR0425582DOI10.4064/sm-58-1-91-97
- Kadec' M. Ĭ., 10.4064/sm-40-1-85-89, Studia Math. 40 (1971), 85–89. MR0313764DOI10.4064/sm-40-1-85-89
- Kubiś W., 10.1016/j.apal.2014.07.004, Ann. Pure Appl. Logic 165 (2014), no. 11, 1755–1811. MR3244668DOI10.1016/j.apal.2014.07.004
- Kubiś W., Solecki S., 10.1007/s11856-012-0134-9, Israel J. Math. 195 (2013), no. 1, 449–456. MR3101256DOI10.1007/s11856-012-0134-9
- Pełczyński A., 10.4064/sm-19-2-209-228, Studia Math. 19 (1960), 209–228. MR0126145DOI10.4064/sm-19-2-209-228
- Pełczyński A., 10.4064/sm-32-3-247-268, Studia Math. 32 (1969), 247–268. MR0241954DOI10.4064/sm-32-3-247-268
- Pełczyński A., 10.4064/sm-40-3-239-243, Studia Math. 40 (1971), 239–243. MR0308753DOI10.4064/sm-40-3-239-243
- Pełczyński A., Wojtaszczyk P., 10.4064/sm-40-1-91-108, Studia Math. 40 (1971), 91–108. MR0313765DOI10.4064/sm-40-1-91-108
- Schechtman G., On Pełczyński's paper “Universal bases” (Studia Math. 32 (1969), 247–268), Israel J. Math. 22 (1975), no. 3–4, 181–184. MR0390730
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.