The universal Banach space with a K -suppression unconditional basis

Taras O. Banakh; Joanna Garbulińska-Wegrzyn

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 2, page 195-206
  • ISSN: 0010-2628

Abstract

top
Using the technique of Fraïssé theory, for every constant K 1 , we construct a universal object 𝕌 K in the class of Banach spaces possessing a normalized K -suppression unconditional Schauder basis.

How to cite

top

Banakh, Taras O., and Garbulińska-Wegrzyn, Joanna. "The universal Banach space with a $K$-suppression unconditional basis." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 195-206. <http://eudml.org/doc/294783>.

@article{Banakh2018,
abstract = {Using the technique of Fraïssé theory, for every constant $K\ge 1$, we construct a universal object $\mathbb \{U\}_K$ in the class of Banach spaces possessing a normalized $K$-suppression unconditional Schauder basis.},
author = {Banakh, Taras O., Garbulińska-Wegrzyn, Joanna},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$1$-suppression unconditional Schauder basis; rational spaces; isometry},
language = {eng},
number = {2},
pages = {195-206},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The universal Banach space with a $K$-suppression unconditional basis},
url = {http://eudml.org/doc/294783},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Banakh, Taras O.
AU - Garbulińska-Wegrzyn, Joanna
TI - The universal Banach space with a $K$-suppression unconditional basis
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 195
EP - 206
AB - Using the technique of Fraïssé theory, for every constant $K\ge 1$, we construct a universal object $\mathbb {U}_K$ in the class of Banach spaces possessing a normalized $K$-suppression unconditional Schauder basis.
LA - eng
KW - $1$-suppression unconditional Schauder basis; rational spaces; isometry
UR - http://eudml.org/doc/294783
ER -

References

top
  1. Albiac F., Kalton N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, Cham, 2016. Zbl1094.46002MR3526021
  2. Fabián M., Halaba P., Hájek P., Montesinos Santalucía V., Pelant J., Zízler V., Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer, New York, 2001. MR1831176
  3. Fraïssé R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954), 35–182 (French). MR0069236
  4. Garbulińska-Wegrzyn J., 10.15352/bjma/1381782097, Banach J. Math. Anal. 8 (2014), no. 1, 211–220. MR3161692DOI10.15352/bjma/1381782097
  5. Gurariĭ V. I., Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Mat. Zh. 7 (1966), 1002–1013 (Russian). MR0200697
  6. Johnson W. B., Szankowski A., 10.4064/sm-58-1-91-97, Studia Math. 58 (1976), no. 1, 91–97. MR0425582DOI10.4064/sm-58-1-91-97
  7. Kadec' M. Ĭ., 10.4064/sm-40-1-85-89, Studia Math. 40 (1971), 85–89. MR0313764DOI10.4064/sm-40-1-85-89
  8. Kubiś W., 10.1016/j.apal.2014.07.004, Ann. Pure Appl. Logic 165 (2014), no. 11, 1755–1811. MR3244668DOI10.1016/j.apal.2014.07.004
  9. Kubiś W., Solecki S., 10.1007/s11856-012-0134-9, Israel J. Math. 195 (2013), no. 1, 449–456. MR3101256DOI10.1007/s11856-012-0134-9
  10. Pełczyński A., 10.4064/sm-19-2-209-228, Studia Math. 19 (1960), 209–228. MR0126145DOI10.4064/sm-19-2-209-228
  11. Pełczyński A., 10.4064/sm-32-3-247-268, Studia Math. 32 (1969), 247–268. MR0241954DOI10.4064/sm-32-3-247-268
  12. Pełczyński A., 10.4064/sm-40-3-239-243, Studia Math. 40 (1971), 239–243. MR0308753DOI10.4064/sm-40-3-239-243
  13. Pełczyński A., Wojtaszczyk P., 10.4064/sm-40-1-91-108, Studia Math. 40 (1971), 91–108. MR0313765DOI10.4064/sm-40-1-91-108
  14. Schechtman G., On Pełczyński's paper “Universal bases” (Studia Math. 32 (1969), 247–268), Israel J. Math. 22 (1975), no. 3–4, 181–184. MR0390730

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.