Stress-strength based on m -generalized order statistics and concomitant for dependent families

Filippo Domma; Abbas Eftekharian; Mostafa Razmkhah

Applications of Mathematics (2019)

  • Volume: 64, Issue: 4, page 437-467
  • ISSN: 0862-7940

Abstract

top
The stress-strength model is proposed based on the m -generalized order statistics and the corresponding concomitant. For the dependency between m -generalized order statistics and its concomitant, a bivariate copula expansion is considered and the stress-strength model is obtained for two special cases of order statistics and upper record values. In the particular case of copula function, the generalized Farlie-Gumbel-Morgenstern bivariate distribution function is considered with proportional reversed hazard functions as marginal functions. Based on the order statistics and record values, two estimators of stress-strength are presented using a procedure similar to the inference functions for margins. Finally, a simulation study is carried out which shows the good performance of the proposed estimators for a finite sample.

How to cite

top

Domma, Filippo, Eftekharian, Abbas, and Razmkhah, Mostafa. "Stress-strength based on $m$-generalized order statistics and concomitant for dependent families." Applications of Mathematics 64.4 (2019): 437-467. <http://eudml.org/doc/294787>.

@article{Domma2019,
abstract = {The stress-strength model is proposed based on the $m$-generalized order statistics and the corresponding concomitant. For the dependency between $m$-generalized order statistics and its concomitant, a bivariate copula expansion is considered and the stress-strength model is obtained for two special cases of order statistics and upper record values. In the particular case of copula function, the generalized Farlie-Gumbel-Morgenstern bivariate distribution function is considered with proportional reversed hazard functions as marginal functions. Based on the order statistics and record values, two estimators of stress-strength are presented using a procedure similar to the inference functions for margins. Finally, a simulation study is carried out which shows the good performance of the proposed estimators for a finite sample.},
author = {Domma, Filippo, Eftekharian, Abbas, Razmkhah, Mostafa},
journal = {Applications of Mathematics},
keywords = {copula function; Dagum distribution; generalized order statistics; Farlie-Gumbel-Morgenstern distribution; proportional reversed hazard family; record values},
language = {eng},
number = {4},
pages = {437-467},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stress-strength based on $m$-generalized order statistics and concomitant for dependent families},
url = {http://eudml.org/doc/294787},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Domma, Filippo
AU - Eftekharian, Abbas
AU - Razmkhah, Mostafa
TI - Stress-strength based on $m$-generalized order statistics and concomitant for dependent families
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 437
EP - 467
AB - The stress-strength model is proposed based on the $m$-generalized order statistics and the corresponding concomitant. For the dependency between $m$-generalized order statistics and its concomitant, a bivariate copula expansion is considered and the stress-strength model is obtained for two special cases of order statistics and upper record values. In the particular case of copula function, the generalized Farlie-Gumbel-Morgenstern bivariate distribution function is considered with proportional reversed hazard functions as marginal functions. Based on the order statistics and record values, two estimators of stress-strength are presented using a procedure similar to the inference functions for margins. Finally, a simulation study is carried out which shows the good performance of the proposed estimators for a finite sample.
LA - eng
KW - copula function; Dagum distribution; generalized order statistics; Farlie-Gumbel-Morgenstern distribution; proportional reversed hazard family; record values
UR - http://eudml.org/doc/294787
ER -

References

top
  1. Adimari, G., Chiogna, M., 10.1016/j.csda.2005.12.007, Comput. Stat. Data Anal. 51 (2006), 1875-1891. (2006) Zbl1157.62369MR2307549DOI10.1016/j.csda.2005.12.007
  2. Al-Mutairi, D. K., Ghitany, M. E., Kundu, D., 10.1080/03610926.2014.968729, Commun. Stat., Theory Methods 44 (2015), 4096-4113. (2015) Zbl1333.62062MR3406333DOI10.1080/03610926.2014.968729
  3. Asgharzadeh, A., Valiollahi, R., Raqab, M. Z., Stress-strength reliability of Weibull distribution based on progressively censored samples, SORT 35 (2011), 103-124. (2011) Zbl1284.62144MR2908294
  4. Bairamov, I., Kotz, S., Bekçi, M., 10.1080/02664760120047861, J. Appl. Stat. 28 (2001), 521-536. (2001) Zbl0991.62032MR1836732DOI10.1080/02664760120047861
  5. Baklizi, A., 10.1080/03610920701501921, Commun. Stat., Theory Methods 37 (2008), 692-698 corrigendum ibid. 40 2011 4322-4323. (2008) Zbl1309.62161MR2432305DOI10.1080/03610920701501921
  6. Baklizi, A., 10.5402/2012/263612, ISRN Probab. Stat. 2012 (2012), Article ID 263612, 11 pages. (2012) Zbl06169692DOI10.5402/2012/263612
  7. Basirat, M., Baratpour, S., Ahmadi, J., 10.1080/00949655.2013.824449, J. Stat. Comput. Simulation 85 (2015), 431-449. (2015) MR3275457DOI10.1080/00949655.2013.824449
  8. Beg, M. I., Ahsanullah, M., 10.1016/j.stamet.2007.04.001, Stat. Methodol. 5 (2008), 1-20. (2008) Zbl1248.62076MR2416936DOI10.1016/j.stamet.2007.04.001
  9. Bose, A., Gangopadhyay, S., 10.1016/j.stamet.2012.07.004, Stat. Methodol. 10 (2013), 103-112. (2013) Zbl1365.62065MR2974814DOI10.1016/j.stamet.2012.07.004
  10. Chacko, M., Thomas, P. Y., 10.1007/s00362-006-0011-x, Stat. Pap. 49 263-275 (2008). (2008) Zbl1168.62346MR2365390DOI10.1007/s00362-006-0011-x
  11. Condino, F., Domma, F., Latorre, G., 10.1007/s00362-016-0772-9, Stat. Pap. 59 (2018), 467-485. (2018) Zbl06912421MR3800810DOI10.1007/s00362-016-0772-9
  12. Dagum, C., The generation and distribution of income. The Lorenz curve and the Gini ratio, Economie Appliqu{é}e 33 (1980), 327-367. (1980) 
  13. David, H. A., Nagaraja, H. N., 10.1002/0471722162, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester (2003). (2003) Zbl1053.62060MR1994955DOI10.1002/0471722162
  14. Dengler, B., On the Asymptotic Behaviour of the Estimator of Kendall's Tau, Ph.D. Thesis, TU Vienna (2010). (2010) 
  15. Domma, F., Giordano, S., 10.1007/s10260-012-0192-5, Stat. Methods Appl. 21 (2012), 375-389. (2012) Zbl1255.91328MR2981655DOI10.1007/s10260-012-0192-5
  16. Domma, F., Giordano, S., 10.1007/s00362-012-0463-0, Stat. Pap. 54 (2013), 807-826. (2013) Zbl1307.62234MR3072902DOI10.1007/s00362-012-0463-0
  17. Domma, F., Giordano, S., 10.1016/j.cam.2015.08.022, J. Comput. Appl. Math. 294 (2016), 413-435. (2016) Zbl1330.62216MR3406991DOI10.1016/j.cam.2015.08.022
  18. Farlie, D. J. G., 10.1093/biomet/47.3-4.307, Biometrika 47 (1960), 307-323. (1960) Zbl0102.14903MR0119312DOI10.1093/biomet/47.3-4.307
  19. Gradshteyn, I. S., Ryzhik, I. M., 10.1016/C2009-0-22516-5, Elsevier/Academic Press, Amsterdam (2007). (2007) Zbl1208.65001MR2360010DOI10.1016/C2009-0-22516-5
  20. Gupta, R. C., Subramanian, S., 10.1080/03610919808813503, Commun. Stat., Simulation Comput. 27 (1998), 675-698. (1998) Zbl0916.62065DOI10.1080/03610919808813503
  21. Hanagal, D. D., 10.1080/03610929708831958, Commun. Stat., Theory Methods 26 (1997), 911-919. (1997) Zbl0917.62081MR1436086DOI10.1080/03610929708831958
  22. Jaheen, Z. F., 10.1081/STA-120037445, Commun. Stat., Theory Methods 33 (2004), 1851-1861. (2004) Zbl1213.62014MR2065178DOI10.1081/STA-120037445
  23. Joe, H., 10.1201/b13150, Monographs on Statistics and Applied Probability 73, Chapman & Hall, London (1997). (1997) Zbl0990.62517MR1462613DOI10.1201/b13150
  24. Joe, H., Xu, J. J., 10.14288/1.0225985, Technical Report #166, University of British Columbia, Vancouver (1996). (1996) DOI10.14288/1.0225985
  25. Kamps, U., 10.1016/0378-3758(94)00147-n, J. Stat. Plann. Inference 48 (1995), 1-23. (1995) Zbl0838.62038MR1366370DOI10.1016/0378-3758(94)00147-n
  26. Kotz, S., Lumelskii, Y., Pensky, M., 10.1142/5015, World Scientific, River Edge (2003). (2003) Zbl1017.62100MR1980497DOI10.1142/5015
  27. Marshall, A. W., Olkin, I., Life Distributions. Structure of Nonparametric, Semiparametric, and Parametric Families, Springer Series in Statistics, Springer, New York (2007),9999DOI99999 10.1007/978-0-387-68477-2 . (2007) Zbl1304.62019MR2344835
  28. Mood, A. M., Graybill, F. A., Boes, D. C., Introduction to the Theory of Statistics, McGraw-Hill Series in Probability and Statistics, McGraw-Hill Book Company, New York (1974). (1974) Zbl0277.62002MR0033470
  29. Nadar, M., Kızılaslan, F., 10.1007/s00362-013-0526-x, Stat. Pap. 55 (2014), 751-783. (2014) Zbl1336.62077MR3227550DOI10.1007/s00362-013-0526-x
  30. Nadarajah, S., 10.1155/mpe.2005.101, Math. Probl. Eng. 2005 (2005), 101-111. (2005) Zbl1069.62081MR2144110DOI10.1155/mpe.2005.101
  31. Nadarajah, S., 10.1016/j.spl.2015.02.005, Stat. Probab. Lett. 100 (2015), 77-84. (2015) Zbl1314.62137MR3324077DOI10.1016/j.spl.2015.02.005
  32. Nelsen, R. B., 10.1007/0-387-28678-0, Springer Series in Statistics, Springer, New York (2006). (2006) Zbl1152.62030MR2197664DOI10.1007/0-387-28678-0
  33. Nevzorov, V. B., Ahsanullah, M., /10.1002/1521-4036(200012)42:8<1069::AID-BIMJ1069>3.0.CO;2-W, Biom. J. 42 (2000), 1069-1081. (2000) Zbl0960.62052MR1818512DOI/10.1002/1521-4036(200012)42:8<1069::AID-BIMJ1069>3.0.CO;2-W
  34. Pakdaman, Z., Ahmadi, J., Stress-strength reliability for P ( X r : n 1 < Y k : n 2 ) in the exponential case, İstatistik 6 (2013), 92-102. (2013) MR3241750
  35. Raqab, M. Z., Madi, M. T., 10.1016/j.jspi.2011.04.016, J. Stat. Plann. Inference 141 (2011), 3313-3322. (2011) Zbl1216.62151MR2805647DOI10.1016/j.jspi.2011.04.016
  36. Rezaei, S., Tahmasbi, R., Mahmoodi, M., 10.1016/j.jspi.2009.07.024, J. Stat. Plann. Inference 140 (2010), 480-494. (2010) Zbl1177.62024MR2558379DOI10.1016/j.jspi.2009.07.024
  37. Saraçoğlu, B., Kinaci, I., Kundu, D., 10.1080/00949655.2010.551772, J. Stat. Comput. Simulation 82 (2012), 729-744. (2012) Zbl06147497MR2916087DOI10.1080/00949655.2010.551772
  38. Sengupta, S., 10.1080/02331880903546431, Statistics 45 (2011), 179-188. (2011) Zbl1283.62017MR2783405DOI10.1080/02331880903546431
  39. Tahmasebi, S., Jafari, A. A., Afshari, M., 10.2991/jsta.2015.14.1.1, J. Stat. Theory Appl. 14 (2015), 1-12. (2015) MR3341061DOI10.2991/jsta.2015.14.1.1
  40. Tarvirdizade, B., Ahmadpour, M., 10.1016/j.stamet.2016.01.005, Stat. Methodol. 31 (2016), 58-72. (2016) Zbl07037202MR3477728DOI10.1016/j.stamet.2016.01.005
  41. Valiollahi, R., Asgharzadeh, A., Raqab, M. Z., 10.1080/03610926.2011.650265, Commun. Stat., Theory Methods 42 (2013), 4476-4498. (2013) Zbl1282.65017MR3171012DOI10.1080/03610926.2011.650265
  42. Wong, A., 10.1016/j.jspi.2011.04.024, J. Stat. Plann. Inference 142 (2012), 601-607. (2012) Zbl1231.62039MR2843061DOI10.1016/j.jspi.2011.04.024
  43. Yang, S. S., 10.1214/aos/1176343954, Ann. Stat. (1977), 996-1002. (1977) Zbl0367.62017MR0501519DOI10.1214/aos/1176343954
  44. Yörübulut, S., Gebizlioglu, O. L., 10.1016/j.cam.2013.01.006, J. Comput. Appl. Math. 247 (2013), 68-83. (2013) Zbl06155442MR3023302DOI10.1016/j.cam.2013.01.006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.