Stress-strength based on -generalized order statistics and concomitant for dependent families
Filippo Domma; Abbas Eftekharian; Mostafa Razmkhah
Applications of Mathematics (2019)
- Volume: 64, Issue: 4, page 437-467
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDomma, Filippo, Eftekharian, Abbas, and Razmkhah, Mostafa. "Stress-strength based on $m$-generalized order statistics and concomitant for dependent families." Applications of Mathematics 64.4 (2019): 437-467. <http://eudml.org/doc/294787>.
@article{Domma2019,
abstract = {The stress-strength model is proposed based on the $m$-generalized order statistics and the corresponding concomitant. For the dependency between $m$-generalized order statistics and its concomitant, a bivariate copula expansion is considered and the stress-strength model is obtained for two special cases of order statistics and upper record values. In the particular case of copula function, the generalized Farlie-Gumbel-Morgenstern bivariate distribution function is considered with proportional reversed hazard functions as marginal functions. Based on the order statistics and record values, two estimators of stress-strength are presented using a procedure similar to the inference functions for margins. Finally, a simulation study is carried out which shows the good performance of the proposed estimators for a finite sample.},
author = {Domma, Filippo, Eftekharian, Abbas, Razmkhah, Mostafa},
journal = {Applications of Mathematics},
keywords = {copula function; Dagum distribution; generalized order statistics; Farlie-Gumbel-Morgenstern distribution; proportional reversed hazard family; record values},
language = {eng},
number = {4},
pages = {437-467},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stress-strength based on $m$-generalized order statistics and concomitant for dependent families},
url = {http://eudml.org/doc/294787},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Domma, Filippo
AU - Eftekharian, Abbas
AU - Razmkhah, Mostafa
TI - Stress-strength based on $m$-generalized order statistics and concomitant for dependent families
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 437
EP - 467
AB - The stress-strength model is proposed based on the $m$-generalized order statistics and the corresponding concomitant. For the dependency between $m$-generalized order statistics and its concomitant, a bivariate copula expansion is considered and the stress-strength model is obtained for two special cases of order statistics and upper record values. In the particular case of copula function, the generalized Farlie-Gumbel-Morgenstern bivariate distribution function is considered with proportional reversed hazard functions as marginal functions. Based on the order statistics and record values, two estimators of stress-strength are presented using a procedure similar to the inference functions for margins. Finally, a simulation study is carried out which shows the good performance of the proposed estimators for a finite sample.
LA - eng
KW - copula function; Dagum distribution; generalized order statistics; Farlie-Gumbel-Morgenstern distribution; proportional reversed hazard family; record values
UR - http://eudml.org/doc/294787
ER -
References
top- Adimari, G., Chiogna, M., 10.1016/j.csda.2005.12.007, Comput. Stat. Data Anal. 51 (2006), 1875-1891. (2006) Zbl1157.62369MR2307549DOI10.1016/j.csda.2005.12.007
- Al-Mutairi, D. K., Ghitany, M. E., Kundu, D., 10.1080/03610926.2014.968729, Commun. Stat., Theory Methods 44 (2015), 4096-4113. (2015) Zbl1333.62062MR3406333DOI10.1080/03610926.2014.968729
- Asgharzadeh, A., Valiollahi, R., Raqab, M. Z., Stress-strength reliability of Weibull distribution based on progressively censored samples, SORT 35 (2011), 103-124. (2011) Zbl1284.62144MR2908294
- Bairamov, I., Kotz, S., Bekçi, M., 10.1080/02664760120047861, J. Appl. Stat. 28 (2001), 521-536. (2001) Zbl0991.62032MR1836732DOI10.1080/02664760120047861
- Baklizi, A., 10.1080/03610920701501921, Commun. Stat., Theory Methods 37 (2008), 692-698 corrigendum ibid. 40 2011 4322-4323. (2008) Zbl1309.62161MR2432305DOI10.1080/03610920701501921
- Baklizi, A., 10.5402/2012/263612, ISRN Probab. Stat. 2012 (2012), Article ID 263612, 11 pages. (2012) Zbl06169692DOI10.5402/2012/263612
- Basirat, M., Baratpour, S., Ahmadi, J., 10.1080/00949655.2013.824449, J. Stat. Comput. Simulation 85 (2015), 431-449. (2015) MR3275457DOI10.1080/00949655.2013.824449
- Beg, M. I., Ahsanullah, M., 10.1016/j.stamet.2007.04.001, Stat. Methodol. 5 (2008), 1-20. (2008) Zbl1248.62076MR2416936DOI10.1016/j.stamet.2007.04.001
- Bose, A., Gangopadhyay, S., 10.1016/j.stamet.2012.07.004, Stat. Methodol. 10 (2013), 103-112. (2013) Zbl1365.62065MR2974814DOI10.1016/j.stamet.2012.07.004
- Chacko, M., Thomas, P. Y., 10.1007/s00362-006-0011-x, Stat. Pap. 49 263-275 (2008). (2008) Zbl1168.62346MR2365390DOI10.1007/s00362-006-0011-x
- Condino, F., Domma, F., Latorre, G., 10.1007/s00362-016-0772-9, Stat. Pap. 59 (2018), 467-485. (2018) Zbl06912421MR3800810DOI10.1007/s00362-016-0772-9
- Dagum, C., The generation and distribution of income. The Lorenz curve and the Gini ratio, Economie Appliqu{é}e 33 (1980), 327-367. (1980)
- David, H. A., Nagaraja, H. N., 10.1002/0471722162, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester (2003). (2003) Zbl1053.62060MR1994955DOI10.1002/0471722162
- Dengler, B., On the Asymptotic Behaviour of the Estimator of Kendall's Tau, Ph.D. Thesis, TU Vienna (2010). (2010)
- Domma, F., Giordano, S., 10.1007/s10260-012-0192-5, Stat. Methods Appl. 21 (2012), 375-389. (2012) Zbl1255.91328MR2981655DOI10.1007/s10260-012-0192-5
- Domma, F., Giordano, S., 10.1007/s00362-012-0463-0, Stat. Pap. 54 (2013), 807-826. (2013) Zbl1307.62234MR3072902DOI10.1007/s00362-012-0463-0
- Domma, F., Giordano, S., 10.1016/j.cam.2015.08.022, J. Comput. Appl. Math. 294 (2016), 413-435. (2016) Zbl1330.62216MR3406991DOI10.1016/j.cam.2015.08.022
- Farlie, D. J. G., 10.1093/biomet/47.3-4.307, Biometrika 47 (1960), 307-323. (1960) Zbl0102.14903MR0119312DOI10.1093/biomet/47.3-4.307
- Gradshteyn, I. S., Ryzhik, I. M., 10.1016/C2009-0-22516-5, Elsevier/Academic Press, Amsterdam (2007). (2007) Zbl1208.65001MR2360010DOI10.1016/C2009-0-22516-5
- Gupta, R. C., Subramanian, S., 10.1080/03610919808813503, Commun. Stat., Simulation Comput. 27 (1998), 675-698. (1998) Zbl0916.62065DOI10.1080/03610919808813503
- Hanagal, D. D., 10.1080/03610929708831958, Commun. Stat., Theory Methods 26 (1997), 911-919. (1997) Zbl0917.62081MR1436086DOI10.1080/03610929708831958
- Jaheen, Z. F., 10.1081/STA-120037445, Commun. Stat., Theory Methods 33 (2004), 1851-1861. (2004) Zbl1213.62014MR2065178DOI10.1081/STA-120037445
- Joe, H., 10.1201/b13150, Monographs on Statistics and Applied Probability 73, Chapman & Hall, London (1997). (1997) Zbl0990.62517MR1462613DOI10.1201/b13150
- Joe, H., Xu, J. J., 10.14288/1.0225985, Technical Report #166, University of British Columbia, Vancouver (1996). (1996) DOI10.14288/1.0225985
- Kamps, U., 10.1016/0378-3758(94)00147-n, J. Stat. Plann. Inference 48 (1995), 1-23. (1995) Zbl0838.62038MR1366370DOI10.1016/0378-3758(94)00147-n
- Kotz, S., Lumelskii, Y., Pensky, M., 10.1142/5015, World Scientific, River Edge (2003). (2003) Zbl1017.62100MR1980497DOI10.1142/5015
- Marshall, A. W., Olkin, I., Life Distributions. Structure of Nonparametric, Semiparametric, and Parametric Families, Springer Series in Statistics, Springer, New York (2007),9999DOI99999 10.1007/978-0-387-68477-2 . (2007) Zbl1304.62019MR2344835
- Mood, A. M., Graybill, F. A., Boes, D. C., Introduction to the Theory of Statistics, McGraw-Hill Series in Probability and Statistics, McGraw-Hill Book Company, New York (1974). (1974) Zbl0277.62002MR0033470
- Nadar, M., Kızılaslan, F., 10.1007/s00362-013-0526-x, Stat. Pap. 55 (2014), 751-783. (2014) Zbl1336.62077MR3227550DOI10.1007/s00362-013-0526-x
- Nadarajah, S., 10.1155/mpe.2005.101, Math. Probl. Eng. 2005 (2005), 101-111. (2005) Zbl1069.62081MR2144110DOI10.1155/mpe.2005.101
- Nadarajah, S., 10.1016/j.spl.2015.02.005, Stat. Probab. Lett. 100 (2015), 77-84. (2015) Zbl1314.62137MR3324077DOI10.1016/j.spl.2015.02.005
- Nelsen, R. B., 10.1007/0-387-28678-0, Springer Series in Statistics, Springer, New York (2006). (2006) Zbl1152.62030MR2197664DOI10.1007/0-387-28678-0
- Nevzorov, V. B., Ahsanullah, M., /10.1002/1521-4036(200012)42:8<1069::AID-BIMJ1069>3.0.CO;2-W, Biom. J. 42 (2000), 1069-1081. (2000) Zbl0960.62052MR1818512DOI/10.1002/1521-4036(200012)42:8<1069::AID-BIMJ1069>3.0.CO;2-W
- Pakdaman, Z., Ahmadi, J., Stress-strength reliability for in the exponential case, İstatistik 6 (2013), 92-102. (2013) MR3241750
- Raqab, M. Z., Madi, M. T., 10.1016/j.jspi.2011.04.016, J. Stat. Plann. Inference 141 (2011), 3313-3322. (2011) Zbl1216.62151MR2805647DOI10.1016/j.jspi.2011.04.016
- Rezaei, S., Tahmasbi, R., Mahmoodi, M., 10.1016/j.jspi.2009.07.024, J. Stat. Plann. Inference 140 (2010), 480-494. (2010) Zbl1177.62024MR2558379DOI10.1016/j.jspi.2009.07.024
- Saraçoğlu, B., Kinaci, I., Kundu, D., 10.1080/00949655.2010.551772, J. Stat. Comput. Simulation 82 (2012), 729-744. (2012) Zbl06147497MR2916087DOI10.1080/00949655.2010.551772
- Sengupta, S., 10.1080/02331880903546431, Statistics 45 (2011), 179-188. (2011) Zbl1283.62017MR2783405DOI10.1080/02331880903546431
- Tahmasebi, S., Jafari, A. A., Afshari, M., 10.2991/jsta.2015.14.1.1, J. Stat. Theory Appl. 14 (2015), 1-12. (2015) MR3341061DOI10.2991/jsta.2015.14.1.1
- Tarvirdizade, B., Ahmadpour, M., 10.1016/j.stamet.2016.01.005, Stat. Methodol. 31 (2016), 58-72. (2016) Zbl07037202MR3477728DOI10.1016/j.stamet.2016.01.005
- Valiollahi, R., Asgharzadeh, A., Raqab, M. Z., 10.1080/03610926.2011.650265, Commun. Stat., Theory Methods 42 (2013), 4476-4498. (2013) Zbl1282.65017MR3171012DOI10.1080/03610926.2011.650265
- Wong, A., 10.1016/j.jspi.2011.04.024, J. Stat. Plann. Inference 142 (2012), 601-607. (2012) Zbl1231.62039MR2843061DOI10.1016/j.jspi.2011.04.024
- Yang, S. S., 10.1214/aos/1176343954, Ann. Stat. (1977), 996-1002. (1977) Zbl0367.62017MR0501519DOI10.1214/aos/1176343954
- Yörübulut, S., Gebizlioglu, O. L., 10.1016/j.cam.2013.01.006, J. Comput. Appl. Math. 247 (2013), 68-83. (2013) Zbl06155442MR3023302DOI10.1016/j.cam.2013.01.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.