Generalized public transportation scheduling using max-plus algebra
Kistosil Fahim Subiono; Fahim Kistosil; Dieky Adzkiya
Kybernetika (2018)
- Volume: 54, Issue: 2, page 243-267
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSubiono, Kistosil Fahim, Kistosil, Fahim, and Adzkiya, Dieky. "Generalized public transportation scheduling using max-plus algebra." Kybernetika 54.2 (2018): 243-267. <http://eudml.org/doc/294798>.
@article{Subiono2018,
abstract = {In this paper, we discuss the scheduling of a wide class of transportation systems. In particular, we derive an algorithm to generate a regular schedule by using max-plus algebra. Inputs of this algorithm are a graph representing the road network of public transportation systems and the number of public vehicles in each route. The graph has to be strongly connected, which means there is a path from any vertex to every vertex. Let us remark that the algorithm is general in the sense that we can allocate any number of vehicles in each route. The algorithm itself consists of two main steps. In the first step, we use a novel procedure to construct the model. Then in the second step, we compute a regular schedule by using the power algorithm. We describe our proposed framework for an example.},
author = {Subiono, Kistosil Fahim, Kistosil, Fahim, Adzkiya, Dieky},
journal = {Kybernetika},
keywords = {max-plus algebra; strongly connected road network; scheduling},
language = {eng},
number = {2},
pages = {243-267},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generalized public transportation scheduling using max-plus algebra},
url = {http://eudml.org/doc/294798},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Subiono, Kistosil Fahim
AU - Kistosil, Fahim
AU - Adzkiya, Dieky
TI - Generalized public transportation scheduling using max-plus algebra
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 2
SP - 243
EP - 267
AB - In this paper, we discuss the scheduling of a wide class of transportation systems. In particular, we derive an algorithm to generate a regular schedule by using max-plus algebra. Inputs of this algorithm are a graph representing the road network of public transportation systems and the number of public vehicles in each route. The graph has to be strongly connected, which means there is a path from any vertex to every vertex. Let us remark that the algorithm is general in the sense that we can allocate any number of vehicles in each route. The algorithm itself consists of two main steps. In the first step, we use a novel procedure to construct the model. Then in the second step, we compute a regular schedule by using the power algorithm. We describe our proposed framework for an example.
LA - eng
KW - max-plus algebra; strongly connected road network; scheduling
UR - http://eudml.org/doc/294798
ER -
References
top- Arnold, P., Peeters, D., Thomas, I., 10.1016/j.tre.2003.08.005, Transport. Res. Part E: Logist. Transport. Rev. 40 (2004), 255-270. MR1031470DOI10.1016/j.tre.2003.08.005
- Baccelli, F., Cohen, G., Olsder, G. J., Quadrat, J.-P., Synchronization and Linearity, an Algebra for Discrete Event Systems., John Wiley and Sons, 1992. MR1204266
- Braker, J. G., Algorithms and Applications in Timed Discrete Event Systems., PhD Thesis, Delft University of Technology, 1993. MR2714745
- Castelli, L., Pesenti, R., Ukovich, W., 10.1016/j.ejor.2003.02.002, Europ. J. Oper. Res. 155 (2004), 603-615. MR2054682DOI10.1016/j.ejor.2003.02.002
- Chen, B., Cheng, H. H., 10.1109/tits.2010.2048313, IEEE Trans. Intell. Transport. Systems 11 (2010), 485-497. DOI10.1109/tits.2010.2048313
- Cochet-Terrasson, J., Cohen, G., Gaubert, S., McGettrick, M., Quadrat, J.-P., 10.1016/s1474-6670(17)42067-2, In: Proc. IFAC Conference on System Structure and Control, 1998, pp. 699-706. DOI10.1016/s1474-6670(17)42067-2
- Crainic, T. G., Rousseau, J.-M., 10.1016/0191-2615(86)90019-6, Transport. Res. Part B: Methodological 20 (1986), 225-242. DOI10.1016/0191-2615(86)90019-6
- Febbraro, A. Di, Sacone, S., 10.1109/icsmc.1998.725397, In: Proc. IEEE International Conference on Systems, Man, and Cybernetics, 1998, pp. 131-135. DOI10.1109/icsmc.1998.725397
- Febbraro, A. Di, Sacco, N., 10.1016/j.conengprac.2004.04.008, Control Engrg. Practice 12 (2004), 1225-1239. DOI10.1016/j.conengprac.2004.04.008
- Etschmaier, M. M., 10.1016/0005-1098(80)90035-7, Automatica 16 (1980), 255-264. DOI10.1016/0005-1098(80)90035-7
- Fahim, K., Hanafi, L., Ayu, F., Monorail and tram scheduling which integrated Surabaya using max-plus algebra., In: International Seminar on Innovation in Mathematics and Mathematics Education, 2014.
- Fahim, K., Subiono, Woude, J. W. van der, 10.1007/s10626-016-0235-4, Discrete Event Dynamic Systems 27 (2017), 181-203. MR3600889DOI10.1007/s10626-016-0235-4
- Goverde, R. M. P., Punctuality of Railway Operations and Timetable Stability Analysis., PhD Thesis, Delft University of Technology, 2005.
- Gursoy, B. B., Mason, O., 10.1016/j.laa.2010.01.014, Linear Algebra Appl. 435 (2011), 1626-1636. MR2810660DOI10.1016/j.laa.2010.01.014
- Heidergott, B., Olsder, G. J., Woude, J.W. van der, 10.1515/9781400865239, Princeton University Press, 2006. MR2188299DOI10.1515/9781400865239
- Herrero-Perez, D., Martinez-Barbera, H., 10.1109/tii.2009.2038691, IEEE Trans. Industrial Informatics 6 (2010), 166-180. DOI10.1109/tii.2009.2038691
- James, S. J., James, C., Evans, J. A., 10.1016/j.ijrefrig.2006.03.017, Int. J. Refrigeration 29 (2006), 947-957. DOI10.1016/j.ijrefrig.2006.03.017
- Levin, A., 10.1287/trsc.5.3.232, Transport. Sci. 5 (1971), 232-255. MR0293994DOI10.1287/trsc.5.3.232
- Koelemeijer, G. Soto y, On the Behaviour of Classes of Min-max-plus Systems., PhD Thesis, Delft University of Technology, 2003.
- Stein, D. M., 10.1287/trsc.12.3.232, Transport. Sci. 12 (1978), 232-249. DOI10.1287/trsc.12.3.232
- Subiono, Woude, J.W. van der, 10.1023/a:1008315821604, Discrete Event Dynamic Systems 10 (2000), 369-389. MR1791847DOI10.1023/a:1008315821604
- Subiono, On Classes of Min-max-plus Systems and their Applications., PhD Thesis, Delft University of Technology, 2000. MR1897646
- Subiono, Fahim, K., 10.12988/ams.2016.618, Appl. Math. Sci. 10 (2016), 477-486. DOI10.12988/ams.2016.618
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.