Computing discrete convolutions with verified accuracy via Banach algebras and the FFT
Applications of Mathematics (2018)
- Volume: 63, Issue: 3, page 219-235
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLessard, Jean-Philippe. "Computing discrete convolutions with verified accuracy via Banach algebras and the FFT." Applications of Mathematics 63.3 (2018): 219-235. <http://eudml.org/doc/294804>.
@article{Lessard2018,
abstract = {We introduce a method to compute rigorous component-wise enclosures of discrete convolutions using the fast Fourier transform, the properties of Banach algebras, and interval arithmetic. The purpose of this new approach is to improve the implementation and the applicability of computer-assisted proofs performed in weighed $\ell ^1$ Banach algebras of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We introduce some application examples, in particular a rigorous aposteriori error analysis for a steady state in the quintic Swift-Hohenberg PDE.},
author = {Lessard, Jean-Philippe},
journal = {Applications of Mathematics},
keywords = {discrete convolutions; Banach algebras; fast Fourier transform; interval arithmetic; rigorously verified numerics; quintic Swift-Hohenberg PDE},
language = {eng},
number = {3},
pages = {219-235},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Computing discrete convolutions with verified accuracy via Banach algebras and the FFT},
url = {http://eudml.org/doc/294804},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Lessard, Jean-Philippe
TI - Computing discrete convolutions with verified accuracy via Banach algebras and the FFT
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 219
EP - 235
AB - We introduce a method to compute rigorous component-wise enclosures of discrete convolutions using the fast Fourier transform, the properties of Banach algebras, and interval arithmetic. The purpose of this new approach is to improve the implementation and the applicability of computer-assisted proofs performed in weighed $\ell ^1$ Banach algebras of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We introduce some application examples, in particular a rigorous aposteriori error analysis for a steady state in the quintic Swift-Hohenberg PDE.
LA - eng
KW - discrete convolutions; Banach algebras; fast Fourier transform; interval arithmetic; rigorously verified numerics; quintic Swift-Hohenberg PDE
UR - http://eudml.org/doc/294804
ER -
References
top- Boyd, J. P., Chebyshev and Fourier Spectral Methods, Dover Publications, Mineola (2001). (2001) Zbl0994.65128MR1874071
- Brigham, E., Fast Fourier Transform and Its Applications, Prentice Hall, Upper Saddle River (1988). (1988)
- Cyranka, J., 10.1007/s10915-013-9749-1, J. Sci. Comput. 59 (2014), 28-52. (2014) Zbl1296.65138MR3167726DOI10.1007/s10915-013-9749-1
- Day, S., Hiraoka, Y., Mischaikow, K., Ogawa, T., 10.1137/040604479, SIAM J. Appl. Dyn. Syst. 4 (2005), 1-31. (2005) Zbl1058.35050MR2136516DOI10.1137/040604479
- Day, S., Junge, O., Mischaikow, K., 10.1137/030600210, SIAM J. Appl. Dyn. Syst. 3 (2004), 117-160. (2004) Zbl1059.37068MR2067140DOI10.1137/030600210
- Day, S., Kalies, W. D., 10.1137/120903129, SIAM J. Numer. Anal. 51 (2013), 2957-2983. (2013) Zbl1288.37030MR3124898DOI10.1137/120903129
- Day, S., Lessard, J.-P., Mischaikow, K., 10.1137/050645968, SIAM J. Numer. Anal. 45 (2007), 1398-1424. (2007) Zbl1151.65074MR2338393DOI10.1137/050645968
- Figueras, J.-L., Llave, R. de la, 10.1137/16M1073790, SIAM J. Appl. Dyn. Syst. 16 (2017), 834-852. (2017) Zbl1370.65047MR3633778DOI10.1137/16M1073790
- Figueras, J.-L., Haro, A., Luque, A., 10.1007/s10208-016-9339-3, Found. Comput. Math. 17 (2017), 1123-1193. (2017) Zbl06814851MR3709329DOI10.1007/s10208-016-9339-3
- Gameiro, M., Lessard, J.-P., 10.1016/j.jde.2010.07.002, J. Differ. Equations 249 (2010), 2237-2268. (2010) Zbl1256.35196MR2718657DOI10.1016/j.jde.2010.07.002
- Gameiro, M., Lessard, J.-P., Mischaikow, K., 10.1016/j.matcom.2008.03.014, Math. Comput. Simul. 79 (2008), 1368-1382. (2008) Zbl1166.65379MR2487806DOI10.1016/j.matcom.2008.03.014
- Gameiro, M., Lessard, J.-P., Ricaud, Y., 10.1016/j.cam.2015.05.016, J. Comput. Appl. Math. 292 (2016), 654-673. (2016) Zbl1323.65123MR3392421DOI10.1016/j.cam.2015.05.016
- Hiraoka, Y., Ogawa, T., 10.1007/BF03167476, Japan J. Ind. Appl. Math. 22 (2005), 57-75. (2005) Zbl1067.65146MR2126387DOI10.1007/BF03167476
- Hiraoka, Y., Ogawa, T., 10.1016/j.cam.2005.08.036, J. Comput. Appl. Math. 199 (2007), 238-244. (2007) Zbl1109.65110MR2269503DOI10.1016/j.cam.2005.08.036
- Hungria, A., Lessard, J.-P., James, J. D. Mireles, 10.1090/mcom/3046, Math. Comput. 85 (2016), 1427-1459. (2016) Zbl1332.65114MR3454370DOI10.1090/mcom/3046
- Koch, H., Schenkel, A., Wittwer, P., 10.1137/S0036144595284180, SIAM Rev. 38 (1996), 565-604. (1996) Zbl0865.68111MR1420838DOI10.1137/S0036144595284180
- Lessard, J.-P., James, J. D. Mireles, Ransford, J., 10.1016/j.physd.2016.02.007, Physica D 334 (2016), 174-186. (2016) MR3545977DOI10.1016/j.physd.2016.02.007
- Lessard, J.-P., Reinhardt, C., 10.1137/13090883X, SIAM J. Numer. Anal. 52 (2014), 1-22. (2014) Zbl1290.65060MR3148084DOI10.1137/13090883X
- James, J. D. Mireles, Mischaikow, K., 10.1007/978-3-540-70529-1_322, Encyclopedia of Applied and Computational Mathematics B. Engquist Springer, Berlin (2015). (2015) MR3470172DOI10.1007/978-3-540-70529-1_322
- Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs (1966). (1966) Zbl0176.13301MR0231516
- Nakao, M. T., 10.1081/NFA-100105107, Numer. Funct. Anal. Optimization 22 (2001), 321-356. (2001) Zbl1106.65315MR1849323DOI10.1081/NFA-100105107
- Rump, S. M., INTLAB - INTerval LABoratory, T. Csendes Developments in Reliable Computing Kluwer Academic Publishers, Dordrecht (1999), 77-104. Available at http://www.ti3.tu-harburg.de/rump/intlab/. (1999) Zbl0949.65046
- Rump, S. M., 10.1017/S096249291000005X, Acta Numerica 19 (2010), 287-449. (2010) Zbl1323.65046MR2652784DOI10.1017/S096249291000005X
- Sakaguchi, H., Brand, H. R., 10.1016/0167-2789(96)00077-2, Physica D 97 (1996), 274-285. (1996) DOI10.1016/0167-2789(96)00077-2
- Tucker, W., Validated Numerics. A Short Introduction to Rigorous Computations, Princeton University Press, Princeton (2011). (2011) Zbl1231.65077MR2807595
- Berg, J. B. van den, Groothedde, C. M., Lessard, J.-P., A general method for computer-assisted proofs of periodic solutions in delay differential problems, Preprint (2018). (2018) MR3896998
- Berg, J. B. van den, Lessard, J.-P., 10.1090/noti1276, Notices Am. Math. Soc. 62 (2015), 1057-1061. (2015) Zbl1338.68301MR3444942DOI10.1090/noti1276
- Berg, J. B. van den, Williams, J. F., 10.1088/1361-6544/aa60e8, Nonlinearity 30 (2017), 1584-1638. (2017) Zbl1366.65068MR3636312DOI10.1088/1361-6544/aa60e8
- Loan, C. F. Van, 10.1137/1.9781611970999, Frontiers in Applied Mathematics 10, SIAM, Philadelphia (1992). (1992) Zbl0757.65154MR1153025DOI10.1137/1.9781611970999
- Wilczak, D., Zgliczynski, P., 10.1007/s00220-002-0709-0, Commun. Math. Phys. 234 (2003), 37-75. (2003) Zbl1055.70005MR1961956DOI10.1007/s00220-002-0709-0
- Zgliczyński, P., Rigorous numerics for dissipative PDEs. III: An effective algorithm for rigorous integration of dissipative PDEs, Topol. Methods Nonlinear Anal. 36 (2010), 197-262. (2010) Zbl1230.65113MR2788972
- Zgliczyński, P., Mischaikow, K., 10.1007/s102080010010, Found. Comput. Math. 1 (2001), 255-288. (2001) Zbl0984.65101MR1838755DOI10.1007/s102080010010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.