The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments

Lin Jun Wang; You Xiang Xie; Qi Cheng Deng

Kybernetika (2018)

  • Volume: 54, Issue: 3, page 522-541
  • ISSN: 0023-5954

Abstract

top
In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.

How to cite

top

Wang, Lin Jun, Xie, You Xiang, and Deng, Qi Cheng. "The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments." Kybernetika 54.3 (2018): 522-541. <http://eudml.org/doc/294815>.

@article{Wang2018,
abstract = {In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.},
author = {Wang, Lin Jun, Xie, You Xiang, Deng, Qi Cheng},
journal = {Kybernetika},
keywords = {impulsive differential equation; bifurcation theory; stability; impulsive control; persistence and extinction},
language = {eng},
number = {3},
pages = {522-541},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments},
url = {http://eudml.org/doc/294815},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Wang, Lin Jun
AU - Xie, You Xiang
AU - Deng, Qi Cheng
TI - The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 522
EP - 541
AB - In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.
LA - eng
KW - impulsive differential equation; bifurcation theory; stability; impulsive control; persistence and extinction
UR - http://eudml.org/doc/294815
ER -

References

top
  1. Baek, H. K., 10.1016/j.nonrwa.2009.02.021, Nonlinear Anal. Real World Appl. 11 (2010), 1312-1322. MR2646548DOI10.1016/j.nonrwa.2009.02.021
  2. Benchohra, M., Henderson, J., Ntouyas, S. K., 10.1155/9789775945501, Hindawi Publishing Corporation, New York 2006. MR2322133DOI10.1155/9789775945501
  3. Chen, L. J., Chen, F. D., 10.1016/j.nonrwa.2011.03.002, Nonlinear Anal. Real World Appl. 12 (2011), 2467-2473. MR2801033DOI10.1016/j.nonrwa.2011.03.002
  4. Debsis, M., 10.1142/s021833900200055x, J. Biol. Syst. 10 (2002), 225-232. DOI10.1142/s021833900200055x
  5. Dubey, B., 10.1006/jmaa.2000.6741, J. Math. Anal. Appl. (2000), 58-79. DOI10.1006/jmaa.2000.6741
  6. Gao, S. J., Chen, L. S., Nieto, J. J., Torres, A., 10.1016/j.vaccine.2006.05.018, Vaccine 24 (2006), 6037-6045. MR2494731DOI10.1016/j.vaccine.2006.05.018
  7. Guo, H. J., Chen, L. S., 10.1016/j.cnsns.2008.05.010, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 5, 2301-2309. MR2474476DOI10.1016/j.cnsns.2008.05.010
  8. Hadeler, K. P., Freedman, H. I., 10.1007/bf00276947, J. Math. Biol. 27 (1989), 609-631. MR1024702DOI10.1007/bf00276947
  9. Jin, Z., Haque, M., Liu, Q. X., 10.1142/s1793524508000370, Int. J. Biomath. 1 (2008), 409-432. MR2483092DOI10.1142/s1793524508000370
  10. Hui, J., Chen, L., 10.1016/j.chaos.2005.08.036, Chaos Solitons Fractals 29 (2006), 407-416. MR2211477DOI10.1016/j.chaos.2005.08.036
  11. Jiang, X. W., Song, Q., Hao, M. Y., 10.1016/j.amc.2009.12.044, Appl. Math. Comput. 215 (2010), 4221-4229. MR2596099DOI10.1016/j.amc.2009.12.044
  12. Jiao, J. J., Cai, S. H., Li, L. M., 10.1016/j.jfranklin.2016.06.035, J. Franklin Inst. 353 (2016), 3818-3834. MR3539405DOI10.1016/j.jfranklin.2016.06.035
  13. Jiao, J. J., Yang, X. S., Chen, L. S., Cai, S. H., 10.1016/j.chaos.2009.03.132, Chaos Solitons Fractals 42 (2009), 2280-2287. MR2559887DOI10.1016/j.chaos.2009.03.132
  14. Lakmeche, A., Birfurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment., Dynam. Contin. Discrete Impuls. 7 (2000), 265-287. MR1744966
  15. Lakshmikantham, V., Bainov, D., Simeonov, P., Theory of Impulsive Differential Equations., World Scientific Publisher, Singapore 1989, pp. 27-66. Zbl0719.34002MR1082551
  16. Li, Y.F., Cui, J. A., 10.1016/j.cnsns.2008.06.024, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2353-2365. MR2474479DOI10.1016/j.cnsns.2008.06.024
  17. Li, Y. F., Cui, J. A., Song, X. Y., 10.1016/j.amc.2008.06.037, Appl. Math. Comput. 204 (2008), 269-280. MR2458365DOI10.1016/j.amc.2008.06.037
  18. Liu, Z. J., Chen, L. S., 10.1016/j.chaos.2005.12.004, Chaos Solitons Fract. 32 (2007), 1703-1712. MR2299084DOI10.1016/j.chaos.2005.12.004
  19. Liu, B., Teng, Z. D., Chen, L. S., 10.1142/s0218339005001409, J. Biol. Syst. 13 (2005), 31-44. MR2295383DOI10.1142/s0218339005001409
  20. Liu, B., Zhang, L., 10.1016/j.amc.2009.03.065, Appl. Math. Comput. 214 (2009), 155-162. MR2541054DOI10.1016/j.amc.2009.03.065
  21. Meng, X. Z., Chen, L. S., Chen, H. D., 10.1016/j.amc.2006.07.124, Appl. Math. Comput. 186 (2008), 516-529. MR2314511DOI10.1016/j.amc.2006.07.124
  22. Meng, X. Z., Li, Z. Q., Nieto, J. J., 10.1007/s10910-009-9536-2, J. Math. Chem. 47 (2009), 123-144. MR2576641DOI10.1007/s10910-009-9536-2
  23. Nieto, J. J., O'Regan, D., 10.1016/j.nonrwa.2007.10.022, Nonlinear Anal. Real World Appl. 10 (2009), 680-690. MR2474254DOI10.1016/j.nonrwa.2007.10.022
  24. Panetta, J. C., 10.1016/0092-8240(95)00346-0, Bull. Math. Biol. 58 (1996), 425-447. DOI10.1016/0092-8240(95)00346-0
  25. Rhodes, C. J., Anderson, R. M., 10.1016/s0016-0032(96)00096-8, J. Franklin Inst. 335 (1998), 199-211. MR1603416DOI10.1016/s0016-0032(96)00096-8
  26. Sun, K. B., Zhang, T. H., Tian, Y., 10.1016/j.amc.2016.07.046, Appl. Math. Comput. 292 (2017), 253-371. MR3542555DOI10.1016/j.amc.2016.07.046
  27. Sun, K. B., Zhang, T. H., Tian, Y., 10.1016/j.mbs.2016.06.006, Math. Biosci. 279 (2016), 13-26. MR3532075DOI10.1016/j.mbs.2016.06.006
  28. Wang, L. M., Chen, L. S., Nieto, J. J., 10.1016/j.nonrwa.2009.02.027, J. Nonlinear Anal. Real World Appl. 11 (2010), 1374-1386. MR2646553DOI10.1016/j.nonrwa.2009.02.027
  29. Wang, L., Liu, Z., Hui, J., Chen, L., 10.1016/j.chaos.2006.01.102, Chaos Solitons Fractals 33 (2007), 1213-1219. MR2318908DOI10.1016/j.chaos.2006.01.102
  30. Wang, L. J., Xie, Y. X., Fu, J. Q., 10.1016/j.jfranklin.2013.03.008, J. Franklin Inst. 350 (2013), 1443-1461. MR3067566DOI10.1016/j.jfranklin.2013.03.008
  31. Wu, R. H., Zou, X. L., Wang, K., 10.1016/j.cnsns.2014.06.023, Commun. Nonlinear Sci. Numer. Simul. 20 (2015), 965-974. MR3255647DOI10.1016/j.cnsns.2014.06.023
  32. Xiao, Y., Bosch, F. V. D., 10.1016/s0304-3800(03)00197-2, Ecol. Model. 168 (2003), 203-214. DOI10.1016/s0304-3800(03)00197-2
  33. Xiao, Y., Chen, L., 10.1016/s0025-5564(01)00049-9, Math. Biosci. 171 (2001), 59-82. MR1839209DOI10.1016/s0025-5564(01)00049-9
  34. Xiao, Y. N., Chen, L. S., 10.1016/s0096-3003(00)00057-6, Appl. Math. Comput. 123 (2001), 63-73. MR1846712DOI10.1016/s0096-3003(00)00057-6
  35. Xie, Y. X., Wang, L. J., Deng, Q. C., Wu, Z. J., 10.1016/j.amc.2016.07.042, Appl. Math. Comput. 292 (2017), 320-335. MR3542560DOI10.1016/j.amc.2016.07.042
  36. Xie, Y. X., Yuan, Z. H., Wang, L. J., 10.1016/j.jocs.2014.06.011, J. Comput. Sci. 5 (2014), 685-695. MR3246878DOI10.1016/j.jocs.2014.06.011
  37. Zhang, H., Chen, L. S., Nieto, J. J., 10.1016/j.nonrwa.2007.05.004, Nonlinear Anal. Real World Probl. 9 (2008), 1714-1726. MR2422575DOI10.1016/j.nonrwa.2007.05.004
  38. Zhang, S. W., Tan, D. J., 10.1016/j.apm.2014.12.020, Appl. Math. Modelling 39 (2015), 6319-6331. MR3418684DOI10.1016/j.apm.2014.12.020
  39. Zuo, W. J., Jiang, D. Q., 10.1016/j.nahs.2016.03.004, Nonlinear Analysis: Hybrid Systems 22 (2016), 191-201. MR3530838DOI10.1016/j.nahs.2016.03.004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.