The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments
Lin Jun Wang; You Xiang Xie; Qi Cheng Deng
Kybernetika (2018)
- Volume: 54, Issue: 3, page 522-541
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWang, Lin Jun, Xie, You Xiang, and Deng, Qi Cheng. "The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments." Kybernetika 54.3 (2018): 522-541. <http://eudml.org/doc/294815>.
@article{Wang2018,
abstract = {In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.},
author = {Wang, Lin Jun, Xie, You Xiang, Deng, Qi Cheng},
journal = {Kybernetika},
keywords = {impulsive differential equation; bifurcation theory; stability; impulsive control; persistence and extinction},
language = {eng},
number = {3},
pages = {522-541},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments},
url = {http://eudml.org/doc/294815},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Wang, Lin Jun
AU - Xie, You Xiang
AU - Deng, Qi Cheng
TI - The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 522
EP - 541
AB - In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.
LA - eng
KW - impulsive differential equation; bifurcation theory; stability; impulsive control; persistence and extinction
UR - http://eudml.org/doc/294815
ER -
References
top- Baek, H. K., 10.1016/j.nonrwa.2009.02.021, Nonlinear Anal. Real World Appl. 11 (2010), 1312-1322. MR2646548DOI10.1016/j.nonrwa.2009.02.021
- Benchohra, M., Henderson, J., Ntouyas, S. K., 10.1155/9789775945501, Hindawi Publishing Corporation, New York 2006. MR2322133DOI10.1155/9789775945501
- Chen, L. J., Chen, F. D., 10.1016/j.nonrwa.2011.03.002, Nonlinear Anal. Real World Appl. 12 (2011), 2467-2473. MR2801033DOI10.1016/j.nonrwa.2011.03.002
- Debsis, M., 10.1142/s021833900200055x, J. Biol. Syst. 10 (2002), 225-232. DOI10.1142/s021833900200055x
- Dubey, B., 10.1006/jmaa.2000.6741, J. Math. Anal. Appl. (2000), 58-79. DOI10.1006/jmaa.2000.6741
- Gao, S. J., Chen, L. S., Nieto, J. J., Torres, A., 10.1016/j.vaccine.2006.05.018, Vaccine 24 (2006), 6037-6045. MR2494731DOI10.1016/j.vaccine.2006.05.018
- Guo, H. J., Chen, L. S., 10.1016/j.cnsns.2008.05.010, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 5, 2301-2309. MR2474476DOI10.1016/j.cnsns.2008.05.010
- Hadeler, K. P., Freedman, H. I., 10.1007/bf00276947, J. Math. Biol. 27 (1989), 609-631. MR1024702DOI10.1007/bf00276947
- Jin, Z., Haque, M., Liu, Q. X., 10.1142/s1793524508000370, Int. J. Biomath. 1 (2008), 409-432. MR2483092DOI10.1142/s1793524508000370
- Hui, J., Chen, L., 10.1016/j.chaos.2005.08.036, Chaos Solitons Fractals 29 (2006), 407-416. MR2211477DOI10.1016/j.chaos.2005.08.036
- Jiang, X. W., Song, Q., Hao, M. Y., 10.1016/j.amc.2009.12.044, Appl. Math. Comput. 215 (2010), 4221-4229. MR2596099DOI10.1016/j.amc.2009.12.044
- Jiao, J. J., Cai, S. H., Li, L. M., 10.1016/j.jfranklin.2016.06.035, J. Franklin Inst. 353 (2016), 3818-3834. MR3539405DOI10.1016/j.jfranklin.2016.06.035
- Jiao, J. J., Yang, X. S., Chen, L. S., Cai, S. H., 10.1016/j.chaos.2009.03.132, Chaos Solitons Fractals 42 (2009), 2280-2287. MR2559887DOI10.1016/j.chaos.2009.03.132
- Lakmeche, A., Birfurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment., Dynam. Contin. Discrete Impuls. 7 (2000), 265-287. MR1744966
- Lakshmikantham, V., Bainov, D., Simeonov, P., Theory of Impulsive Differential Equations., World Scientific Publisher, Singapore 1989, pp. 27-66. Zbl0719.34002MR1082551
- Li, Y.F., Cui, J. A., 10.1016/j.cnsns.2008.06.024, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2353-2365. MR2474479DOI10.1016/j.cnsns.2008.06.024
- Li, Y. F., Cui, J. A., Song, X. Y., 10.1016/j.amc.2008.06.037, Appl. Math. Comput. 204 (2008), 269-280. MR2458365DOI10.1016/j.amc.2008.06.037
- Liu, Z. J., Chen, L. S., 10.1016/j.chaos.2005.12.004, Chaos Solitons Fract. 32 (2007), 1703-1712. MR2299084DOI10.1016/j.chaos.2005.12.004
- Liu, B., Teng, Z. D., Chen, L. S., 10.1142/s0218339005001409, J. Biol. Syst. 13 (2005), 31-44. MR2295383DOI10.1142/s0218339005001409
- Liu, B., Zhang, L., 10.1016/j.amc.2009.03.065, Appl. Math. Comput. 214 (2009), 155-162. MR2541054DOI10.1016/j.amc.2009.03.065
- Meng, X. Z., Chen, L. S., Chen, H. D., 10.1016/j.amc.2006.07.124, Appl. Math. Comput. 186 (2008), 516-529. MR2314511DOI10.1016/j.amc.2006.07.124
- Meng, X. Z., Li, Z. Q., Nieto, J. J., 10.1007/s10910-009-9536-2, J. Math. Chem. 47 (2009), 123-144. MR2576641DOI10.1007/s10910-009-9536-2
- Nieto, J. J., O'Regan, D., 10.1016/j.nonrwa.2007.10.022, Nonlinear Anal. Real World Appl. 10 (2009), 680-690. MR2474254DOI10.1016/j.nonrwa.2007.10.022
- Panetta, J. C., 10.1016/0092-8240(95)00346-0, Bull. Math. Biol. 58 (1996), 425-447. DOI10.1016/0092-8240(95)00346-0
- Rhodes, C. J., Anderson, R. M., 10.1016/s0016-0032(96)00096-8, J. Franklin Inst. 335 (1998), 199-211. MR1603416DOI10.1016/s0016-0032(96)00096-8
- Sun, K. B., Zhang, T. H., Tian, Y., 10.1016/j.amc.2016.07.046, Appl. Math. Comput. 292 (2017), 253-371. MR3542555DOI10.1016/j.amc.2016.07.046
- Sun, K. B., Zhang, T. H., Tian, Y., 10.1016/j.mbs.2016.06.006, Math. Biosci. 279 (2016), 13-26. MR3532075DOI10.1016/j.mbs.2016.06.006
- Wang, L. M., Chen, L. S., Nieto, J. J., 10.1016/j.nonrwa.2009.02.027, J. Nonlinear Anal. Real World Appl. 11 (2010), 1374-1386. MR2646553DOI10.1016/j.nonrwa.2009.02.027
- Wang, L., Liu, Z., Hui, J., Chen, L., 10.1016/j.chaos.2006.01.102, Chaos Solitons Fractals 33 (2007), 1213-1219. MR2318908DOI10.1016/j.chaos.2006.01.102
- Wang, L. J., Xie, Y. X., Fu, J. Q., 10.1016/j.jfranklin.2013.03.008, J. Franklin Inst. 350 (2013), 1443-1461. MR3067566DOI10.1016/j.jfranklin.2013.03.008
- Wu, R. H., Zou, X. L., Wang, K., 10.1016/j.cnsns.2014.06.023, Commun. Nonlinear Sci. Numer. Simul. 20 (2015), 965-974. MR3255647DOI10.1016/j.cnsns.2014.06.023
- Xiao, Y., Bosch, F. V. D., 10.1016/s0304-3800(03)00197-2, Ecol. Model. 168 (2003), 203-214. DOI10.1016/s0304-3800(03)00197-2
- Xiao, Y., Chen, L., 10.1016/s0025-5564(01)00049-9, Math. Biosci. 171 (2001), 59-82. MR1839209DOI10.1016/s0025-5564(01)00049-9
- Xiao, Y. N., Chen, L. S., 10.1016/s0096-3003(00)00057-6, Appl. Math. Comput. 123 (2001), 63-73. MR1846712DOI10.1016/s0096-3003(00)00057-6
- Xie, Y. X., Wang, L. J., Deng, Q. C., Wu, Z. J., 10.1016/j.amc.2016.07.042, Appl. Math. Comput. 292 (2017), 320-335. MR3542560DOI10.1016/j.amc.2016.07.042
- Xie, Y. X., Yuan, Z. H., Wang, L. J., 10.1016/j.jocs.2014.06.011, J. Comput. Sci. 5 (2014), 685-695. MR3246878DOI10.1016/j.jocs.2014.06.011
- Zhang, H., Chen, L. S., Nieto, J. J., 10.1016/j.nonrwa.2007.05.004, Nonlinear Anal. Real World Probl. 9 (2008), 1714-1726. MR2422575DOI10.1016/j.nonrwa.2007.05.004
- Zhang, S. W., Tan, D. J., 10.1016/j.apm.2014.12.020, Appl. Math. Modelling 39 (2015), 6319-6331. MR3418684DOI10.1016/j.apm.2014.12.020
- Zuo, W. J., Jiang, D. Q., 10.1016/j.nahs.2016.03.004, Nonlinear Analysis: Hybrid Systems 22 (2016), 191-201. MR3530838DOI10.1016/j.nahs.2016.03.004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.