Towards the properties of fuzzy multiplication for fuzzy numbers

Alexandru Mihai Bica; Dorina Fechete; Ioan Fechete

Kybernetika (2019)

  • Volume: 55, Issue: 1, page 44-62
  • ISSN: 0023-5954

Abstract

top
In this paper, by using a new representation of fuzzy numbers, namely the ecart-representation, we investigate the possibility to consider such multiplication between fuzzy numbers that is fully distributive. The algebraic and topological properties of the obtained semiring are studied making a comparison with the properties of the existing fuzzy multiplication operations. The properties of the generated fuzzy power are investigated.

How to cite

top

Bica, Alexandru Mihai, Fechete, Dorina, and Fechete, Ioan. "Towards the properties of fuzzy multiplication for fuzzy numbers." Kybernetika 55.1 (2019): 44-62. <http://eudml.org/doc/294832>.

@article{Bica2019,
abstract = {In this paper, by using a new representation of fuzzy numbers, namely the ecart-representation, we investigate the possibility to consider such multiplication between fuzzy numbers that is fully distributive. The algebraic and topological properties of the obtained semiring are studied making a comparison with the properties of the existing fuzzy multiplication operations. The properties of the generated fuzzy power are investigated.},
author = {Bica, Alexandru Mihai, Fechete, Dorina, Fechete, Ioan},
journal = {Kybernetika},
keywords = {fuzzy number; semiring; fuzzy product distributivity},
language = {eng},
number = {1},
pages = {44-62},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Towards the properties of fuzzy multiplication for fuzzy numbers},
url = {http://eudml.org/doc/294832},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Bica, Alexandru Mihai
AU - Fechete, Dorina
AU - Fechete, Ioan
TI - Towards the properties of fuzzy multiplication for fuzzy numbers
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 1
SP - 44
EP - 62
AB - In this paper, by using a new representation of fuzzy numbers, namely the ecart-representation, we investigate the possibility to consider such multiplication between fuzzy numbers that is fully distributive. The algebraic and topological properties of the obtained semiring are studied making a comparison with the properties of the existing fuzzy multiplication operations. The properties of the generated fuzzy power are investigated.
LA - eng
KW - fuzzy number; semiring; fuzzy product distributivity
UR - http://eudml.org/doc/294832
ER -

References

top
  1. Allen, P. J., 10.1090/s0002-9939-1969-0237575-4, Proc. Amer. Math. Soc. 21 (1969), 412-416. MR0237575DOI10.1090/s0002-9939-1969-0237575-4
  2. Ban, A. I., Bede, B., Properties of the cross product of fuzzy numbers., J. Fuzzy Math. 14 (2006), 513-531. MR2258422
  3. Bede, B., Mathematics of Fuzzy Sets and Fuzzy Logic., Springer-Verlag, Berlin, Heidelberg 2013. Zbl1271.03001MR3024762
  4. Bede, B., Fodor, J., Product type operations between fuzzy numbers and their applications in geology., Acta Polytechn. Hungar. 3 (2006), 123-139. 
  5. Chou, Ch.-Ch., 10.1016/s0898-1221(03)00139-1, Comput. Math. Appl. 45 (2003), 1601-1610. MR1993230DOI10.1016/s0898-1221(03)00139-1
  6. Coroianu, L., 10.1016/j.fss.2014.10.026, Fuzzy Sets Syst. 283 (2016), 40-55. MR3421857DOI10.1016/j.fss.2014.10.026
  7. Coroianu, L., Fuller, R., 10.1016/j.fss.2017.07.023, Fuzzy Sets Syst. 331 (2018), 116-130. MR3733272DOI10.1016/j.fss.2017.07.023
  8. Bica, A. M., 10.1007/s00500-007-0167-x, Soft Computing 11 (2007), 1099-1105. Zbl1125.03039DOI10.1007/s00500-007-0167-x
  9. Bica, A. M., 10.1016/j.fss.2012.08.002, Fuzzy Sets Syst. 219 (2013), 27-48. Zbl1276.92098MR3035732DOI10.1016/j.fss.2012.08.002
  10. Bica, A. M., 10.1016/j.ijar.2015.10.001, Int. J. Approximate Reasoning 68 (2016), 27-44. MR3430181DOI10.1016/j.ijar.2015.10.001
  11. Delgado, M., Vila, M. A., Voxman, W., 10.1016/s0165-0114(96)00144-3, Fuzzy Sets Syst. 93 (1998), 125-135. Zbl0916.04004MR1601513DOI10.1016/s0165-0114(96)00144-3
  12. Dubois, D., Prade, H., 10.1080/00207727808941724, Int. J. Syst. Sci. 9 (1978), 613-626. Zbl0383.94045MR0491199DOI10.1080/00207727808941724
  13. Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Applications., Academic Press, New York 1980. Zbl0444.94049MR0589341
  14. Atani, R. Ebrahimi, Atani, S. Ebrahimi, Ideal theory in commutative semirings., Bul. Acad. Ştiinţe Repub. Mold. Mat. 57 (2008), 2, 14-23. MR2435797
  15. Atani, R. Ebrahimi, 10.3336/gm.42.2.05, Glasnik Matematicki 42 (2007), 301-308. MR2376908DOI10.3336/gm.42.2.05
  16. Goetschel, R., Voxman, W., 10.1016/0165-0114(86)90026-6, Fuzzy Sets Syst. 18 (1986), 31-43. Zbl0626.26014MR0825618DOI10.1016/0165-0114(86)90026-6
  17. Golan, J. S., 10.1007/978-94-015-9333-5_21, Kluwer Academic Publishers, Dordrecht 1999. MR1746739DOI10.1007/978-94-015-9333-5_21
  18. Guerra, M. L., Stefanini, L., 10.12988/ams.2016.59598, Appl. Math. Sci. 10 (2016), 1373-1389. DOI10.12988/ams.2016.59598
  19. Hanss, M., 10.1007/b138914, Springer-Verlag, Berlin 2005. DOI10.1007/b138914
  20. Kolesárová, A., Vivona, D., Entropy of T-sums and T-products of L-R fuzzy numbers., Kybernetika 37 (2001), 2, 127-145. MR1839223
  21. Ma, M., Friedman, M., Kandel, A., 10.1016/s0165-0114(97)00310-2, Fuzzy Sets Syst. 108 (1999), 83-90. Zbl0937.03059MR1714662DOI10.1016/s0165-0114(97)00310-2
  22. Mareš, M., Multiplication of fuzzy quantities., Kybernetika 28 (1992), 5, 337-356. Zbl0786.04006MR1197719
  23. Mareš, M., Brief note on distributivity of triangular fuzzy numbers., Kybernetika 31 (1995), 5, 451-457. Zbl0856.04009MR1361306
  24. Mareš, M., Fuzzy zero, algebraic equivalence: yes or no?, Kybernetika 32 (1996), 4, 343-351. Zbl0884.04004MR1420127
  25. Mareš, M., 10.1016/s0165-0114(97)00136-x, Fuzzy Sets Syst. 91 (1997), 143-153. MR1480041DOI10.1016/s0165-0114(97)00136-x
  26. Markov, S., 10.1016/j.cam.2003.08.016, J. Comput. Appl. Math. 162 (2004), 93-112. MR2043500DOI10.1016/j.cam.2003.08.016
  27. Markov, S., 10.1007/978-3-642-80350-5_43, J. Universal Computer Sci. 7 (1995), 514-526. MR1403710DOI10.1007/978-3-642-80350-5_43
  28. Markov, S., 10.1023/a:1011418014248, Reliable Computing 7 (2001), 113-127. MR1831373DOI10.1023/a:1011418014248
  29. Mesiar, R., Ribarik, J., 10.1016/0165-0114(94)00314-w, Fuzzy Sets Syst. 74 (1995), 365-369. MR1351585DOI10.1016/0165-0114(94)00314-w
  30. Mizumoto, M., Tanaka, K., The four operations of arithmetic on fuzzy numbers., Systems Comput. Controls 7 (1976), 5, 73-81. MR0476531
  31. Mizumoto, M., Tanaka, K., Some properties of fuzzy numbers., In: Advances in Fuzzy Set Theory and Applications (M. H. Gupta, R. K. Ragade, and R. R. Yager, eds.), North-Holland, Amsterdam, 1979, pp. 156-164. MR0558721
  32. Mordeson, J. N., Nair, P. S., Fuzzy Mathematics: An Introduction for Engineers and Scientists., Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, New York 2001. MR1859718
  33. Nasseri, S. H., Mahdavi-Amiri, N., 10.1007/s12543-009-0004-2, Fuzzy Inf. Eng. 1 (2009), 1, 59-66. DOI10.1007/s12543-009-0004-2
  34. Qiu, D., Zhang, W., 10.1007/s00500-013-1000-3, Soft Comput. 17 (2013), 1471-1477. DOI10.1007/s00500-013-1000-3
  35. Schneider, J., Arithmetic of fuzzy numbers and intervals-a new perspective with examples., arXiv: 1310.5604 [math.GM] (2016). 
  36. Stefanini, L., Sorini, L., Guerra, M. L., 10.1016/j.fss.2006.02.002, Fuzzy Sets Syst. 157 (2006), 2423-2455. Zbl1109.26024MR2254174DOI10.1016/j.fss.2006.02.002
  37. Stefanini, L., Guerra, M. L., On fuzzy arithmetic operations: some properties and distributive approximations., Int. J. Appl. Math. 19 (2006), 171-199. MR2266345
  38. Stupňanová, A., 10.1016/j.fss.2014.08.013, Fuzzy Sets Syst. 264 (2015), 64-75. MR3303664DOI10.1016/j.fss.2014.08.013
  39. Taleshian, A., Rezvani, S., Multiplication operation on trapezoidal fuzzy numbers., J. Phys. Sci. 15 (2011), 17-26. MR2881855
  40. Zavadskas, E. K., Antucheviciene, J., Hajiagha, S. H. Razavi, Hashemi, S. Sadat, 10.1016/j.asoc.2014.08.031, Appl. Soft Comput. 24 (2014), 1013-1021. DOI10.1016/j.asoc.2014.08.031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.