Towards the properties of fuzzy multiplication for fuzzy numbers
Alexandru Mihai Bica; Dorina Fechete; Ioan Fechete
Kybernetika (2019)
- Volume: 55, Issue: 1, page 44-62
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBica, Alexandru Mihai, Fechete, Dorina, and Fechete, Ioan. "Towards the properties of fuzzy multiplication for fuzzy numbers." Kybernetika 55.1 (2019): 44-62. <http://eudml.org/doc/294832>.
@article{Bica2019,
abstract = {In this paper, by using a new representation of fuzzy numbers, namely the ecart-representation, we investigate the possibility to consider such multiplication between fuzzy numbers that is fully distributive. The algebraic and topological properties of the obtained semiring are studied making a comparison with the properties of the existing fuzzy multiplication operations. The properties of the generated fuzzy power are investigated.},
author = {Bica, Alexandru Mihai, Fechete, Dorina, Fechete, Ioan},
journal = {Kybernetika},
keywords = {fuzzy number; semiring; fuzzy product distributivity},
language = {eng},
number = {1},
pages = {44-62},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Towards the properties of fuzzy multiplication for fuzzy numbers},
url = {http://eudml.org/doc/294832},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Bica, Alexandru Mihai
AU - Fechete, Dorina
AU - Fechete, Ioan
TI - Towards the properties of fuzzy multiplication for fuzzy numbers
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 1
SP - 44
EP - 62
AB - In this paper, by using a new representation of fuzzy numbers, namely the ecart-representation, we investigate the possibility to consider such multiplication between fuzzy numbers that is fully distributive. The algebraic and topological properties of the obtained semiring are studied making a comparison with the properties of the existing fuzzy multiplication operations. The properties of the generated fuzzy power are investigated.
LA - eng
KW - fuzzy number; semiring; fuzzy product distributivity
UR - http://eudml.org/doc/294832
ER -
References
top- Allen, P. J., 10.1090/s0002-9939-1969-0237575-4, Proc. Amer. Math. Soc. 21 (1969), 412-416. MR0237575DOI10.1090/s0002-9939-1969-0237575-4
- Ban, A. I., Bede, B., Properties of the cross product of fuzzy numbers., J. Fuzzy Math. 14 (2006), 513-531. MR2258422
- Bede, B., Mathematics of Fuzzy Sets and Fuzzy Logic., Springer-Verlag, Berlin, Heidelberg 2013. Zbl1271.03001MR3024762
- Bede, B., Fodor, J., Product type operations between fuzzy numbers and their applications in geology., Acta Polytechn. Hungar. 3 (2006), 123-139.
- Chou, Ch.-Ch., 10.1016/s0898-1221(03)00139-1, Comput. Math. Appl. 45 (2003), 1601-1610. MR1993230DOI10.1016/s0898-1221(03)00139-1
- Coroianu, L., 10.1016/j.fss.2014.10.026, Fuzzy Sets Syst. 283 (2016), 40-55. MR3421857DOI10.1016/j.fss.2014.10.026
- Coroianu, L., Fuller, R., 10.1016/j.fss.2017.07.023, Fuzzy Sets Syst. 331 (2018), 116-130. MR3733272DOI10.1016/j.fss.2017.07.023
- Bica, A. M., 10.1007/s00500-007-0167-x, Soft Computing 11 (2007), 1099-1105. Zbl1125.03039DOI10.1007/s00500-007-0167-x
- Bica, A. M., 10.1016/j.fss.2012.08.002, Fuzzy Sets Syst. 219 (2013), 27-48. Zbl1276.92098MR3035732DOI10.1016/j.fss.2012.08.002
- Bica, A. M., 10.1016/j.ijar.2015.10.001, Int. J. Approximate Reasoning 68 (2016), 27-44. MR3430181DOI10.1016/j.ijar.2015.10.001
- Delgado, M., Vila, M. A., Voxman, W., 10.1016/s0165-0114(96)00144-3, Fuzzy Sets Syst. 93 (1998), 125-135. Zbl0916.04004MR1601513DOI10.1016/s0165-0114(96)00144-3
- Dubois, D., Prade, H., 10.1080/00207727808941724, Int. J. Syst. Sci. 9 (1978), 613-626. Zbl0383.94045MR0491199DOI10.1080/00207727808941724
- Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Applications., Academic Press, New York 1980. Zbl0444.94049MR0589341
- Atani, R. Ebrahimi, Atani, S. Ebrahimi, Ideal theory in commutative semirings., Bul. Acad. Ştiinţe Repub. Mold. Mat. 57 (2008), 2, 14-23. MR2435797
- Atani, R. Ebrahimi, 10.3336/gm.42.2.05, Glasnik Matematicki 42 (2007), 301-308. MR2376908DOI10.3336/gm.42.2.05
- Goetschel, R., Voxman, W., 10.1016/0165-0114(86)90026-6, Fuzzy Sets Syst. 18 (1986), 31-43. Zbl0626.26014MR0825618DOI10.1016/0165-0114(86)90026-6
- Golan, J. S., 10.1007/978-94-015-9333-5_21, Kluwer Academic Publishers, Dordrecht 1999. MR1746739DOI10.1007/978-94-015-9333-5_21
- Guerra, M. L., Stefanini, L., 10.12988/ams.2016.59598, Appl. Math. Sci. 10 (2016), 1373-1389. DOI10.12988/ams.2016.59598
- Hanss, M., 10.1007/b138914, Springer-Verlag, Berlin 2005. DOI10.1007/b138914
- Kolesárová, A., Vivona, D., Entropy of T-sums and T-products of L-R fuzzy numbers., Kybernetika 37 (2001), 2, 127-145. MR1839223
- Ma, M., Friedman, M., Kandel, A., 10.1016/s0165-0114(97)00310-2, Fuzzy Sets Syst. 108 (1999), 83-90. Zbl0937.03059MR1714662DOI10.1016/s0165-0114(97)00310-2
- Mareš, M., Multiplication of fuzzy quantities., Kybernetika 28 (1992), 5, 337-356. Zbl0786.04006MR1197719
- Mareš, M., Brief note on distributivity of triangular fuzzy numbers., Kybernetika 31 (1995), 5, 451-457. Zbl0856.04009MR1361306
- Mareš, M., Fuzzy zero, algebraic equivalence: yes or no?, Kybernetika 32 (1996), 4, 343-351. Zbl0884.04004MR1420127
- Mareš, M., 10.1016/s0165-0114(97)00136-x, Fuzzy Sets Syst. 91 (1997), 143-153. MR1480041DOI10.1016/s0165-0114(97)00136-x
- Markov, S., 10.1016/j.cam.2003.08.016, J. Comput. Appl. Math. 162 (2004), 93-112. MR2043500DOI10.1016/j.cam.2003.08.016
- Markov, S., 10.1007/978-3-642-80350-5_43, J. Universal Computer Sci. 7 (1995), 514-526. MR1403710DOI10.1007/978-3-642-80350-5_43
- Markov, S., 10.1023/a:1011418014248, Reliable Computing 7 (2001), 113-127. MR1831373DOI10.1023/a:1011418014248
- Mesiar, R., Ribarik, J., 10.1016/0165-0114(94)00314-w, Fuzzy Sets Syst. 74 (1995), 365-369. MR1351585DOI10.1016/0165-0114(94)00314-w
- Mizumoto, M., Tanaka, K., The four operations of arithmetic on fuzzy numbers., Systems Comput. Controls 7 (1976), 5, 73-81. MR0476531
- Mizumoto, M., Tanaka, K., Some properties of fuzzy numbers., In: Advances in Fuzzy Set Theory and Applications (M. H. Gupta, R. K. Ragade, and R. R. Yager, eds.), North-Holland, Amsterdam, 1979, pp. 156-164. MR0558721
- Mordeson, J. N., Nair, P. S., Fuzzy Mathematics: An Introduction for Engineers and Scientists., Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, New York 2001. MR1859718
- Nasseri, S. H., Mahdavi-Amiri, N., 10.1007/s12543-009-0004-2, Fuzzy Inf. Eng. 1 (2009), 1, 59-66. DOI10.1007/s12543-009-0004-2
- Qiu, D., Zhang, W., 10.1007/s00500-013-1000-3, Soft Comput. 17 (2013), 1471-1477. DOI10.1007/s00500-013-1000-3
- Schneider, J., Arithmetic of fuzzy numbers and intervals-a new perspective with examples., arXiv: 1310.5604 [math.GM] (2016).
- Stefanini, L., Sorini, L., Guerra, M. L., 10.1016/j.fss.2006.02.002, Fuzzy Sets Syst. 157 (2006), 2423-2455. Zbl1109.26024MR2254174DOI10.1016/j.fss.2006.02.002
- Stefanini, L., Guerra, M. L., On fuzzy arithmetic operations: some properties and distributive approximations., Int. J. Appl. Math. 19 (2006), 171-199. MR2266345
- Stupňanová, A., 10.1016/j.fss.2014.08.013, Fuzzy Sets Syst. 264 (2015), 64-75. MR3303664DOI10.1016/j.fss.2014.08.013
- Taleshian, A., Rezvani, S., Multiplication operation on trapezoidal fuzzy numbers., J. Phys. Sci. 15 (2011), 17-26. MR2881855
- Zavadskas, E. K., Antucheviciene, J., Hajiagha, S. H. Razavi, Hashemi, S. Sadat, 10.1016/j.asoc.2014.08.031, Appl. Soft Comput. 24 (2014), 1013-1021. DOI10.1016/j.asoc.2014.08.031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.