Entropy of T -sums and T -products of L - R fuzzy numbers

Anna Kolesárová; Doretta Vivona

Kybernetika (2001)

  • Volume: 37, Issue: 2, page [127]-145
  • ISSN: 0023-5954

Abstract

top
In the paper the entropy of L R fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of L R fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of T M –sums and T M –products of L R fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other t -norm–based sums and products are derived. Several examples are included.

How to cite

top

Kolesárová, Anna, and Vivona, Doretta. "Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers." Kybernetika 37.2 (2001): [127]-145. <http://eudml.org/doc/33522>.

@article{Kolesárová2001,
abstract = {In the paper the entropy of $L$–$R$ fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of $L$–$R$ fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of $T_M$–sums and $T_M$–products of $L$–$R$ fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other $t$-norm–based sums and products are derived. Several examples are included.},
author = {Kolesárová, Anna, Vivona, Doretta},
journal = {Kybernetika},
keywords = {entropy; $L$-$R$ fuzzy numbers; entropy; - fuzzy numbers},
language = {eng},
number = {2},
pages = {[127]-145},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers},
url = {http://eudml.org/doc/33522},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Kolesárová, Anna
AU - Vivona, Doretta
TI - Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 2
SP - [127]
EP - 145
AB - In the paper the entropy of $L$–$R$ fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of $L$–$R$ fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of $T_M$–sums and $T_M$–products of $L$–$R$ fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other $t$-norm–based sums and products are derived. Several examples are included.
LA - eng
KW - entropy; $L$-$R$ fuzzy numbers; entropy; - fuzzy numbers
UR - http://eudml.org/doc/33522
ER -

References

top
  1. Alsina C., Trillas E., Sur les mesures du degré de flou, Stochastica 3 (1979), 81–84 (1979) Zbl0425.94030MR0562445
  2. Batle N., Trillas E., 10.1016/0022-247X(79)90158-6, J. Math. Anal. Appl. 69 (1979), 469–474 (1979) Zbl0421.28015MR0538233DOI10.1016/0022-247X(79)90158-6
  3. Benvenuti P., Vivona, D., Divari M., Fuzziness measures via Sugeno’s integral, In: Fuzzy Logic and Soft Computing (B. Bouchon–Meunier, R. R. Yager and L. A. Zadeh, eds.). Adv. Fuzzy Systems 4 (1995), 330–336 (1995) Zbl0953.28014MR1391011
  4. Benvenuti P., Vivona, D., Divari M., Divergence and fuzziness measures, Soft Computing (2000), in press Zbl0993.28009
  5. Benvenuti P., Vivona, D., Divari M., Order relations for fuzzy sets and entropy measure, In: New Trends in Fuzzy Systems (D. Mancini, M. Squillante, A. Ventre, eds.), World Scientific 1998, pp. 224–232 (1998) 
  6. Couso I., Gil P., Measure of fuzziness of type 2 fuzzy sets, In: Proceedings IPMU’96, Granada 1996, pp. 581–584 (1996) 
  7. Baets B. De, Marková–Stupňanová A., 10.1016/S0165-0114(97)00141-3, Fuzzy Sets and Systems 91 (1997), 203–213 (1997) MR1480046DOI10.1016/S0165-0114(97)00141-3
  8. Luca A. De, Termini S., 10.1016/S0019-9958(72)90199-4, Inform. and Control 20 (1972), 301–312 (1972) MR0327383DOI10.1016/S0019-9958(72)90199-4
  9. Dubois D., Prade H., 10.1109/TAC.1981.1102744, IEEE Trans. Automat. Control 26 (1981), 926–936 (1981) MR0635852DOI10.1109/TAC.1981.1102744
  10. Dubois D., Kerre E. E., Mesiar, R., Prade H., Fuzzy interval analysis, In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 483–582 Zbl0988.26020MR1890240
  11. Ebanks B. R., 10.1016/0022-247X(83)90003-3, J. Math. Anal. Appl. 94 (1983), 24–37 (1983) Zbl0523.94036MR0701447DOI10.1016/0022-247X(83)90003-3
  12. Hong D. H., Hwang, Ch., Upper bound of T –sums of L R fuzzy numbers, In: Proceedings IPMU’96, Granada 1996, pp. 347–353 (1996) 
  13. Kaufmann A., Introduction to the Theory of Fuzzy Subsets: Volume 1, Academic Press, New York 1975 MR0485402
  14. Klement E. P., Mesiar R., Triangular norms, Tatra Mountains Math. Publ. 13 (1997), 169–194 (1997) Zbl0915.04002MR1483147
  15. Klement E. P., Mesiar, R., Pap E., Quasi and pseudo–inverses of monotone functions, and the constructions of t -norms, Fuzzy Sets and Systems 104 (1999), 3–13 (1999) MR1685803
  16. Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
  17. Knopfmacher J., 10.1016/0022-247X(75)90196-1, J. Math. Anal. Appl. 49 (1975), 529–534 (1975) Zbl0308.02061MR0434619DOI10.1016/0022-247X(75)90196-1
  18. Kolesárová A., Triangular norm-based addition of linear fuzzy numbers, Tatra Mountains Math. Publ. 6 (1995), 75–81 (1995) Zbl0851.04005MR1363985
  19. Kolesárová A., 10.1016/S0165-0114(97)00142-5, Fuzzy Sets and Systems 91 (1997), 215–229 (1997) Zbl0920.04009MR1480047DOI10.1016/S0165-0114(97)00142-5
  20. Kolesárová A., Triangular norm-based additions preserving linearity of linear fuzzy intervals, Mathware and Soft Computing 5 (1998), 91–98 (1998) MR1632755
  21. Loo S. G., Measures of fuzziness, Cybernetica 20 (1997), 201–210 (1997) 
  22. Mareš M., Computation over Fuzzy Quantities, CRC Press, Boca Raton 1994 Zbl0859.94035MR1327525
  23. Marková–Stupňanová A., 10.1016/0165-0114(95)00370-3, Fuzzy Sets and Systems 85 (1996), 379–384 (1996) DOI10.1016/0165-0114(95)00370-3
  24. Mesiar R., Computation over L R fuzzy numbers, In: Proceedings CIFT’95, Trento 1995, pp. 165–176 (1995) 
  25. Mesiar R., L R fuzzy numbers, In: Proceedings IPMU’96, Granada 1996, pp. 337–342 (1996) Zbl0871.04010
  26. Mesiar R., 10.1016/0165-0114(95)00178-6, Fuzzy Sets and Systems 79 (1996), 259–261 (1996) MR1388398DOI10.1016/0165-0114(95)00178-6
  27. Mesiar R., 10.1016/0165-0114(95)00401-7, Fuzzy Sets and Systems 86 (1997), 73–78 (1997) Zbl0921.04002MR1438439DOI10.1016/0165-0114(95)00401-7
  28. Mesiar R., 10.1016/S0165-0114(97)00143-7, Fuzzy Sets and Systems 91 (1997), 231–237 (1997) MR1480048DOI10.1016/S0165-0114(97)00143-7
  29. Nguyen H. T., 10.1016/0022-247X(78)90045-8, J. Math. Anal. Appl. 64 (1978), 369–380 (1978) MR0480044DOI10.1016/0022-247X(78)90045-8
  30. Pal N. R., Bezdek J. C., 10.1109/91.277960, IEEE Trans. Fuzzy Syst. 2 (1994), 107–118 (1994) DOI10.1109/91.277960
  31. Pal N. R., Bezdek J. C., Quantifying different facets of fuzzy uncertainty, In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 459–480 Zbl0986.94056MR1890239
  32. Sander W., 10.1016/0165-0114(89)90135-8, Fuzzy Sets and Systems 29 (1989), 49–55 (1989) MR0976287DOI10.1016/0165-0114(89)90135-8
  33. Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, Amsterdam 1983 Zbl0546.60010MR0790314
  34. Trillas E., Riera T., 10.1016/0020-0255(78)90005-1, Inform. Sci. 15 (1978), 158–168 (1978) MR0538847DOI10.1016/0020-0255(78)90005-1
  35. Wang W. J., Chiu, Ch. H., The entropy of fuzzy numbers with arithmetical operations, Fuzzy Sets and Systems 111 (2000), 357–366 MR1748553
  36. Vivona D., Mathematical aspects of the theory of measures of fuzziness, Mathware and Soft Computing 3 (1996), 211–224 (1996) Zbl0859.04007MR1414268
  37. Yager R. R., 10.1080/03081077908547452, Internat. J. Gen. Systems 5 (1979), 221–229 (1979) MR0553492DOI10.1080/03081077908547452
  38. Zadeh L. A., 10.1016/0022-247X(68)90078-4, J. Math. Anal. Appl. 23 (1968), 421–427 (1968) Zbl0174.49002MR0230569DOI10.1016/0022-247X(68)90078-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.