Entropy of -sums and -products of - fuzzy numbers
Anna Kolesárová; Doretta Vivona
Kybernetika (2001)
- Volume: 37, Issue: 2, page [127]-145
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKolesárová, Anna, and Vivona, Doretta. "Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers." Kybernetika 37.2 (2001): [127]-145. <http://eudml.org/doc/33522>.
@article{Kolesárová2001,
abstract = {In the paper the entropy of $L$–$R$ fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of $L$–$R$ fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of $T_M$–sums and $T_M$–products of $L$–$R$ fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other $t$-norm–based sums and products are derived. Several examples are included.},
author = {Kolesárová, Anna, Vivona, Doretta},
journal = {Kybernetika},
keywords = {entropy; $L$-$R$ fuzzy numbers; entropy; - fuzzy numbers},
language = {eng},
number = {2},
pages = {[127]-145},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers},
url = {http://eudml.org/doc/33522},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Kolesárová, Anna
AU - Vivona, Doretta
TI - Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 2
SP - [127]
EP - 145
AB - In the paper the entropy of $L$–$R$ fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of $L$–$R$ fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of $T_M$–sums and $T_M$–products of $L$–$R$ fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other $t$-norm–based sums and products are derived. Several examples are included.
LA - eng
KW - entropy; $L$-$R$ fuzzy numbers; entropy; - fuzzy numbers
UR - http://eudml.org/doc/33522
ER -
References
top- Alsina C., Trillas E., Sur les mesures du degré de flou, Stochastica 3 (1979), 81–84 (1979) Zbl0425.94030MR0562445
- Batle N., Trillas E., 10.1016/0022-247X(79)90158-6, J. Math. Anal. Appl. 69 (1979), 469–474 (1979) Zbl0421.28015MR0538233DOI10.1016/0022-247X(79)90158-6
- Benvenuti P., Vivona, D., Divari M., Fuzziness measures via Sugeno’s integral, In: Fuzzy Logic and Soft Computing (B. Bouchon–Meunier, R. R. Yager and L. A. Zadeh, eds.). Adv. Fuzzy Systems 4 (1995), 330–336 (1995) Zbl0953.28014MR1391011
- Benvenuti P., Vivona, D., Divari M., Divergence and fuzziness measures, Soft Computing (2000), in press Zbl0993.28009
- Benvenuti P., Vivona, D., Divari M., Order relations for fuzzy sets and entropy measure, In: New Trends in Fuzzy Systems (D. Mancini, M. Squillante, A. Ventre, eds.), World Scientific 1998, pp. 224–232 (1998)
- Couso I., Gil P., Measure of fuzziness of type 2 fuzzy sets, In: Proceedings IPMU’96, Granada 1996, pp. 581–584 (1996)
- Baets B. De, Marková–Stupňanová A., 10.1016/S0165-0114(97)00141-3, Fuzzy Sets and Systems 91 (1997), 203–213 (1997) MR1480046DOI10.1016/S0165-0114(97)00141-3
- Luca A. De, Termini S., 10.1016/S0019-9958(72)90199-4, Inform. and Control 20 (1972), 301–312 (1972) MR0327383DOI10.1016/S0019-9958(72)90199-4
- Dubois D., Prade H., 10.1109/TAC.1981.1102744, IEEE Trans. Automat. Control 26 (1981), 926–936 (1981) MR0635852DOI10.1109/TAC.1981.1102744
- Dubois D., Kerre E. E., Mesiar, R., Prade H., Fuzzy interval analysis, In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 483–582 Zbl0988.26020MR1890240
- Ebanks B. R., 10.1016/0022-247X(83)90003-3, J. Math. Anal. Appl. 94 (1983), 24–37 (1983) Zbl0523.94036MR0701447DOI10.1016/0022-247X(83)90003-3
- Hong D. H., Hwang, Ch., Upper bound of –sums of – fuzzy numbers, In: Proceedings IPMU’96, Granada 1996, pp. 347–353 (1996)
- Kaufmann A., Introduction to the Theory of Fuzzy Subsets: Volume 1, Academic Press, New York 1975 MR0485402
- Klement E. P., Mesiar R., Triangular norms, Tatra Mountains Math. Publ. 13 (1997), 169–194 (1997) Zbl0915.04002MR1483147
- Klement E. P., Mesiar, R., Pap E., Quasi and pseudo–inverses of monotone functions, and the constructions of -norms, Fuzzy Sets and Systems 104 (1999), 3–13 (1999) MR1685803
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
- Knopfmacher J., 10.1016/0022-247X(75)90196-1, J. Math. Anal. Appl. 49 (1975), 529–534 (1975) Zbl0308.02061MR0434619DOI10.1016/0022-247X(75)90196-1
- Kolesárová A., Triangular norm-based addition of linear fuzzy numbers, Tatra Mountains Math. Publ. 6 (1995), 75–81 (1995) Zbl0851.04005MR1363985
- Kolesárová A., 10.1016/S0165-0114(97)00142-5, Fuzzy Sets and Systems 91 (1997), 215–229 (1997) Zbl0920.04009MR1480047DOI10.1016/S0165-0114(97)00142-5
- Kolesárová A., Triangular norm-based additions preserving linearity of linear fuzzy intervals, Mathware and Soft Computing 5 (1998), 91–98 (1998) MR1632755
- Loo S. G., Measures of fuzziness, Cybernetica 20 (1997), 201–210 (1997)
- Mareš M., Computation over Fuzzy Quantities, CRC Press, Boca Raton 1994 Zbl0859.94035MR1327525
- Marková–Stupňanová A., 10.1016/0165-0114(95)00370-3, Fuzzy Sets and Systems 85 (1996), 379–384 (1996) DOI10.1016/0165-0114(95)00370-3
- Mesiar R., Computation over – fuzzy numbers, In: Proceedings CIFT’95, Trento 1995, pp. 165–176 (1995)
- Mesiar R., – fuzzy numbers, In: Proceedings IPMU’96, Granada 1996, pp. 337–342 (1996) Zbl0871.04010
- Mesiar R., 10.1016/0165-0114(95)00178-6, Fuzzy Sets and Systems 79 (1996), 259–261 (1996) MR1388398DOI10.1016/0165-0114(95)00178-6
- Mesiar R., 10.1016/0165-0114(95)00401-7, Fuzzy Sets and Systems 86 (1997), 73–78 (1997) Zbl0921.04002MR1438439DOI10.1016/0165-0114(95)00401-7
- Mesiar R., 10.1016/S0165-0114(97)00143-7, Fuzzy Sets and Systems 91 (1997), 231–237 (1997) MR1480048DOI10.1016/S0165-0114(97)00143-7
- Nguyen H. T., 10.1016/0022-247X(78)90045-8, J. Math. Anal. Appl. 64 (1978), 369–380 (1978) MR0480044DOI10.1016/0022-247X(78)90045-8
- Pal N. R., Bezdek J. C., 10.1109/91.277960, IEEE Trans. Fuzzy Syst. 2 (1994), 107–118 (1994) DOI10.1109/91.277960
- Pal N. R., Bezdek J. C., Quantifying different facets of fuzzy uncertainty, In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 459–480 Zbl0986.94056MR1890239
- Sander W., 10.1016/0165-0114(89)90135-8, Fuzzy Sets and Systems 29 (1989), 49–55 (1989) MR0976287DOI10.1016/0165-0114(89)90135-8
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, Amsterdam 1983 Zbl0546.60010MR0790314
- Trillas E., Riera T., 10.1016/0020-0255(78)90005-1, Inform. Sci. 15 (1978), 158–168 (1978) MR0538847DOI10.1016/0020-0255(78)90005-1
- Wang W. J., Chiu, Ch. H., The entropy of fuzzy numbers with arithmetical operations, Fuzzy Sets and Systems 111 (2000), 357–366 MR1748553
- Vivona D., Mathematical aspects of the theory of measures of fuzziness, Mathware and Soft Computing 3 (1996), 211–224 (1996) Zbl0859.04007MR1414268
- Yager R. R., 10.1080/03081077908547452, Internat. J. Gen. Systems 5 (1979), 221–229 (1979) MR0553492DOI10.1080/03081077908547452
- Zadeh L. A., 10.1016/0022-247X(68)90078-4, J. Math. Anal. Appl. 23 (1968), 421–427 (1968) Zbl0174.49002MR0230569DOI10.1016/0022-247X(68)90078-4
Citations in EuDML Documents
top- Milan Mareš, Information measures and uncertainty of particular symbols
- Milan Mareš, Radko Mesiar, Information in vague data sources
- Milan Mareš, Entropies of vague information sources
- Milan Mareš, Information Measure for Vague Symbols
- Alexandru Mihai Bica, Dorina Fechete, Ioan Fechete, Towards the properties of fuzzy multiplication for fuzzy numbers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.