An existence and approximation theorem for solutions of degenerate quasilinear elliptic equations
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 1, page 65-80
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCavalheiro, Albo Carlos. "An existence and approximation theorem for solutions of degenerate quasilinear elliptic equations." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 65-80. <http://eudml.org/doc/294833>.
@article{Cavalheiro2018,
abstract = {The main result establishes that a weak solution of degenerate quasilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate quasilinear elliptic equations.},
author = {Cavalheiro, Albo Carlos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {degenerate quasilinear elliptic equations; weighted Sobolev spaces},
language = {eng},
number = {1},
pages = {65-80},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An existence and approximation theorem for solutions of degenerate quasilinear elliptic equations},
url = {http://eudml.org/doc/294833},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - An existence and approximation theorem for solutions of degenerate quasilinear elliptic equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 65
EP - 80
AB - The main result establishes that a weak solution of degenerate quasilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate quasilinear elliptic equations.
LA - eng
KW - degenerate quasilinear elliptic equations; weighted Sobolev spaces
UR - http://eudml.org/doc/294833
ER -
References
top- Bresch D., Lemoine J., Guíllen-Gonzalez F., A note on a degenerate elliptic equation with applications for lakes and seas, Electron. J. Differential Equations, vol. 2004 (2004), no. 42, 1–13.
- Cavalheiro A. C., 10.1017/S0013091500000079, Proc. Edinb. Math. Soc. 45 (2002), 363–389; doi: 10.1017/S0013091500000079. DOI10.1017/S0013091500000079
- Cavalheiro A. C., 10.5373/jaram.1978.022014, J. Adv. Res. Appl. Math. 6 (2014), no. 4, 46–58; doi: 10.5373/jaram.1978.022014. DOI10.5373/jaram.1978.022014
- Colombo M., Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems, Publications of the Scuolla Normale Superiore Pisa, 22, Pisa, 2017.
- Fabes E., Kenig C., Serapioni R., 10.1080/03605308208820218, Comm. Partial Differential Equations 7 (1982), 77–116; doi:10.1080/03605308208820218. DOI10.1080/03605308208820218
- Fernandes J. C., Franchi B., 10.4171/RMI/206, Rev. Mat. Iberoamericana 12 (1996), 491–525. DOI10.4171/RMI/206
- Garcia-Cuerva J., Rubio de Francia J. L., Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116, North Holland Publishing Co., Amsterdam, 1985.
- Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 1993.
- Kufner A., Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985. Zbl0862.46017
- Muckenhoupt B., 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI10.1090/S0002-9947-1972-0293384-6
- Torchinsky A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986. Zbl1097.42002
- Turesson B. O., 10.1007/BFb0103912, Lecture Notes in Math., 1736, Springer, Berlin, 2000. DOI10.1007/BFb0103912
- Xu X., A local partial regularity theorem for weak solutions of degenerate elliptic equations and its applications to the thermistor problem, Differential Integral Equations 12 (1999), no. 1, 83–100.
- Zeidler E., Nonlinear Functional Analysis and its Applications, II/B, Springer, New York, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.