A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space

L.O. Jolaoso; H.A. Abass; O.T. Mewomo

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 3, page 167-194
  • ISSN: 0044-8753

Abstract

top
In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of δ -demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition n = 1 β n x n - 1 - x n < + on the inertial term. Finally, we provide some applications and numerical example to show the efficiency and accuracy of our algorithm. Our results improve and complement many other related results in the literature.

How to cite

top

Jolaoso, L.O., Abass, H.A., and Mewomo, O.T.. "A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space." Archivum Mathematicum 055.3 (2019): 167-194. <http://eudml.org/doc/294843>.

@article{Jolaoso2019,
abstract = {In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of $\delta $-demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition $\sum _\{n=1\}^\infty \beta _n\Vert x_\{n-1\} -x_n\Vert < + \infty $ on the inertial term. Finally, we provide some applications and numerical example to show the efficiency and accuracy of our algorithm. Our results improve and complement many other related results in the literature.},
author = {Jolaoso, L.O., Abass, H.A., Mewomo, O.T.},
journal = {Archivum Mathematicum},
keywords = {proximal gradient algorithm; proximal operator; demimetric mappings; inertial algorithm; viscosity approximation; Meir Keeler contraction; fixed point theory},
language = {eng},
number = {3},
pages = {167-194},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space},
url = {http://eudml.org/doc/294843},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Jolaoso, L.O.
AU - Abass, H.A.
AU - Mewomo, O.T.
TI - A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 3
SP - 167
EP - 194
AB - In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of $\delta $-demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition $\sum _{n=1}^\infty \beta _n\Vert x_{n-1} -x_n\Vert < + \infty $ on the inertial term. Finally, we provide some applications and numerical example to show the efficiency and accuracy of our algorithm. Our results improve and complement many other related results in the literature.
LA - eng
KW - proximal gradient algorithm; proximal operator; demimetric mappings; inertial algorithm; viscosity approximation; Meir Keeler contraction; fixed point theory
UR - http://eudml.org/doc/294843
ER -

References

top
  1. Abass, H.A., Ogbuisi, F.U., Mewomo, O.T., Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm, U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190. (2018) MR3785191
  2. Alvarez, F., Attouch, H., 10.1023/A:1011253113155, Set-Valued Anal. 9 (2001), 3–11. (2001) MR1845931DOI10.1023/A:1011253113155
  3. Beck, A., Teboull, M., Gradient-based algorithms with applications to signal-recovery problems, Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88. (2010) MR2767564
  4. Beck, A., Teboulle, M., 10.1137/080716542, SIAM J. Imaging Sci. 2 (1) (2009), 183–202. (2009) MR2486527DOI10.1137/080716542
  5. Bot, R.I., Csetnek, E.R., 10.1007/s10957-015-0730-z, J. Optim. Theory Appl. 171 (2016), 600–616. (2016) MR3557440DOI10.1007/s10957-015-0730-z
  6. Bot, R.I., Csetnek, E.R., Laszlo, S.C., An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions, EJCO 4 (2016), 3–25. (2016) MR3500980
  7. Byrne, C., 10.1088/0266-5611/20/1/006, Inverse Problems 20 (2004), 103–120. (2004) MR2044608DOI10.1088/0266-5611/20/1/006
  8. Cai, G., Shehu, Y., An iterative algorithm for fixed point problem and convex minimization problem with applications, Fixed Point Theory and Appl. 2015 123 (2015), 18 pp. (2015) MR3303116
  9. Ceng, L.-C., Ansari, Q.H., Ya, J.-C., 10.1016/j.na.2011.05.005, Nonlinear Anal. 74 (2011), 5286–5302. (2011) MR2819274DOI10.1016/j.na.2011.05.005
  10. Censor, Y., Elfving, T., 10.1007/BF02142692, Numer. Algorithms 8 (2–4) (1994), 221–239. (1994) Zbl0828.65065MR1309222DOI10.1007/BF02142692
  11. Chambolle, A., Dossal, C., 10.1007/s10957-015-0746-4, J. Optim. Theory Appl. 166 (2015), 968–982. (2015) MR3375610DOI10.1007/s10957-015-0746-4
  12. Chan, R.H., Ma, S., Jang, J.F., 10.1137/15100463X, SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267. (2015) MR3404682DOI10.1137/15100463X
  13. Combettes, P.L., 10.1080/02331930412331327157, Optimization 53 (2004), 475–504. (2004) MR2115266DOI10.1080/02331930412331327157
  14. Combettes, P.L., Pesquet, J.-C., Proximal Splitting Methods in Signal Processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212. (2011) MR2858838
  15. Fichera, G., Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140. (1963) MR0178631
  16. Geobel, K., Kirk, W.A., Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. (1990) MR1074005
  17. Guo, Y., Cui, W., 10.1186/s13660-018-1695-x, J. Ineq. Appl. 2018 (2018). (2018) MR3797139DOI10.1186/s13660-018-1695-x
  18. Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M., 10.1007/s11075-018-0633-9, Numer. Algorithms (2018), https://doi.org/10.1007/s11075-018-0633-9. (2018) MR4027651DOI10.1007/s11075-018-0633-9
  19. Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T., 10.1515/apam-2017-0037, Adv. Pure Appl. Math. 9 (3) (2018), 167–183. (2018) MR3819533DOI10.1515/apam-2017-0037
  20. Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T., 10.1515/dema-2018-0015, Demonstratio Math. 51 (2018), 211–232. (2018) MR3856588DOI10.1515/dema-2018-0015
  21. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T., A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize, Demonstratio Math. 52 (1) (2019), 183–203. (2019) MR3938331
  22. Lions, J.L., Stampacchia, G., 10.1002/cpa.3160200302, Comm. Pure Appl. Math. 20 (1967), 493–519. (1967) Zbl0152.34601MR0216344DOI10.1002/cpa.3160200302
  23. Lorenz, D., Pock, T., 10.1007/s10851-014-0523-2, J. Math. Imaging Vision 51 (2) (2015), 311–325. (2015) MR3314536DOI10.1007/s10851-014-0523-2
  24. Maingé, P.E., 10.1016/j.jmaa.2005.12.066, J. Math. Anal. Appl. 325 (2007), 469–479. (2007) MR2273538DOI10.1016/j.jmaa.2005.12.066
  25. Maingé, P.E., 10.1007/s11228-008-0102-z, Set-Valued Anal. 16 (2008), 899–912. (2008) MR2466027DOI10.1007/s11228-008-0102-z
  26. Martinez-Yanes, C., Xu, H.K., 10.1016/j.na.2005.08.018, Nonlinear Anal. 64 (2006), 2400–2411. (2006) MR2215815DOI10.1016/j.na.2005.08.018
  27. Meir, A., Keeler, E., 10.1016/0022-247X(69)90031-6, J. Math. Anal. Appl. 28 (1969), 326–329. (1969) MR0250291DOI10.1016/0022-247X(69)90031-6
  28. Mewomo, O.T., Ogbuisi, F.U., 10.2989/16073606.2017.1375569, Quaestiones Math. 41 (1) (2018), 129–148. (2018) MR3761493DOI10.2989/16073606.2017.1375569
  29. Moudafi, A., 10.1006/jmaa.1999.6615, J. Math. Anal. Appl. 241 (1) (2000), 46–55. (2000) MR1738332DOI10.1006/jmaa.1999.6615
  30. Moudafi, A., Oliny, M., 10.1016/S0377-0427(02)00906-8, J. Comput. Appl. Math. 155 (2003), 447–454. (2003) MR1984300DOI10.1016/S0377-0427(02)00906-8
  31. Moudafi, A., Thakur, B.S., 10.1007/s11590-013-0708-4, Optim. Lett. 8 (7) (2014), 2099–2110. (2014) MR3263242DOI10.1007/s11590-013-0708-4
  32. Nesterov, Y., A method for solving the convex programming problem with convergence rate 0 ( 1 k 2 ) , Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547. (1983) MR0701288
  33. Ogbuisi, F.U., Mewomo, O.T., 10.1007/s11784-016-0397-6, J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128. (2016) MR3692443DOI10.1007/s11784-016-0397-6
  34. Ogbuisi, F.U., Mewomo, O.T., 10.1007/s13370-016-0450-z, Afrika Mat. (3) 28 (1–2) (2017), 295–309. (2017) MR3613639DOI10.1007/s13370-016-0450-z
  35. Ogbuisi, F.U., Mewomo, O.T., 10.24193/fpt-ro.2018.1.26, Fixed Point Theory 19 (1) (2018), 335–358. (2018) MR3754008DOI10.24193/fpt-ro.2018.1.26
  36. Okeke, C.C., Mewomo, O.T., On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280. (2017) MR3742495
  37. Parith, N., Boyd, S., Proximal algorithms, Foundations and Trends in Optimization 1 (3) (2013), 123–231. (2013) 
  38. Pesquet, J.-C., Putselnik, N., A parallel inertial proximal optimization method, Pacific J. Optim. 8 (2) (2012), 273–306. (2012) MR2954380
  39. Polyak, B.T., 10.1016/0041-5553(64)90137-5, U.S.S.R. Comput. Math. Math. Phys. 4 (5) (1964), 1–17. (1964) MR0169403DOI10.1016/0041-5553(64)90137-5
  40. Rockafellar, R.T., 10.1090/S0002-9947-1970-0282272-5, Trans. Amer. Math. Soc. 149 (1970), 75–88. (1970) MR0282272DOI10.1090/S0002-9947-1970-0282272-5
  41. Rockafellar, R.T., Wets, R., Variational Analysis, Springer, Berlin, 1988. (1988) 
  42. Shehu, Y., 10.1007/s10013-014-0091-1, Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1. (2014) MR3386057DOI10.1007/s10013-014-0091-1
  43. Stampacchia, G., Formes bilinearies coercitives sur les ensembles convexes, Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416. (1964) MR0166591
  44. Su, M., Xu, H.K., Remarks on the gradient-projection algorithm, J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43. (2010) MR2911685
  45. Suzuki, T., 10.1016/j.jmaa.2006.01.080, J. Math. Anal. Appl. 325 (2007), 342–352. (2007) MR2273529DOI10.1016/j.jmaa.2006.01.080
  46. Takahashi, W., Wen, C.-F., Yao, J.-C., 10.24193/fpt-ro.2018.1.32, Fixed Point Theory 19 (1) (2018), 407–420. (2018) MR3754014DOI10.24193/fpt-ro.2018.1.32
  47. Tian, M., Huang, L.H., A general approximation method for a kind of convex optimization problems in Hilbert spaces, J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073. (2014) MR3198359
  48. Xu, H.K., 10.1016/j.jmaa.2004.04.059, J. Math. Anal. Appl. 298 (1) (2004), 279–291. (2004) MR2086546DOI10.1016/j.jmaa.2004.04.059
  49. Xu, H.K., 10.1007/s10957-011-9837-z, J. Optim. Theory Appl. 150 rm (2) (2011), 360–378. (2011) MR2818926DOI10.1007/s10957-011-9837-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.