A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space
L.O. Jolaoso; H.A. Abass; O.T. Mewomo
Archivum Mathematicum (2019)
- Volume: 055, Issue: 3, page 167-194
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJolaoso, L.O., Abass, H.A., and Mewomo, O.T.. "A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space." Archivum Mathematicum 055.3 (2019): 167-194. <http://eudml.org/doc/294843>.
@article{Jolaoso2019,
abstract = {In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of $\delta $-demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition $\sum _\{n=1\}^\infty \beta _n\Vert x_\{n-1\} -x_n\Vert < + \infty $ on the inertial term. Finally, we provide some applications and numerical example to show the efficiency and accuracy of our algorithm. Our results improve and complement many other related results in the literature.},
author = {Jolaoso, L.O., Abass, H.A., Mewomo, O.T.},
journal = {Archivum Mathematicum},
keywords = {proximal gradient algorithm; proximal operator; demimetric mappings; inertial algorithm; viscosity approximation; Meir Keeler contraction; fixed point theory},
language = {eng},
number = {3},
pages = {167-194},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space},
url = {http://eudml.org/doc/294843},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Jolaoso, L.O.
AU - Abass, H.A.
AU - Mewomo, O.T.
TI - A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 3
SP - 167
EP - 194
AB - In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of $\delta $-demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition $\sum _{n=1}^\infty \beta _n\Vert x_{n-1} -x_n\Vert < + \infty $ on the inertial term. Finally, we provide some applications and numerical example to show the efficiency and accuracy of our algorithm. Our results improve and complement many other related results in the literature.
LA - eng
KW - proximal gradient algorithm; proximal operator; demimetric mappings; inertial algorithm; viscosity approximation; Meir Keeler contraction; fixed point theory
UR - http://eudml.org/doc/294843
ER -
References
top- Abass, H.A., Ogbuisi, F.U., Mewomo, O.T., Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm, U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190. (2018) MR3785191
- Alvarez, F., Attouch, H., 10.1023/A:1011253113155, Set-Valued Anal. 9 (2001), 3–11. (2001) MR1845931DOI10.1023/A:1011253113155
- Beck, A., Teboull, M., Gradient-based algorithms with applications to signal-recovery problems, Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88. (2010) MR2767564
- Beck, A., Teboulle, M., 10.1137/080716542, SIAM J. Imaging Sci. 2 (1) (2009), 183–202. (2009) MR2486527DOI10.1137/080716542
- Bot, R.I., Csetnek, E.R., 10.1007/s10957-015-0730-z, J. Optim. Theory Appl. 171 (2016), 600–616. (2016) MR3557440DOI10.1007/s10957-015-0730-z
- Bot, R.I., Csetnek, E.R., Laszlo, S.C., An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions, EJCO 4 (2016), 3–25. (2016) MR3500980
- Byrne, C., 10.1088/0266-5611/20/1/006, Inverse Problems 20 (2004), 103–120. (2004) MR2044608DOI10.1088/0266-5611/20/1/006
- Cai, G., Shehu, Y., An iterative algorithm for fixed point problem and convex minimization problem with applications, Fixed Point Theory and Appl. 2015 123 (2015), 18 pp. (2015) MR3303116
- Ceng, L.-C., Ansari, Q.H., Ya, J.-C., 10.1016/j.na.2011.05.005, Nonlinear Anal. 74 (2011), 5286–5302. (2011) MR2819274DOI10.1016/j.na.2011.05.005
- Censor, Y., Elfving, T., 10.1007/BF02142692, Numer. Algorithms 8 (2–4) (1994), 221–239. (1994) Zbl0828.65065MR1309222DOI10.1007/BF02142692
- Chambolle, A., Dossal, C., 10.1007/s10957-015-0746-4, J. Optim. Theory Appl. 166 (2015), 968–982. (2015) MR3375610DOI10.1007/s10957-015-0746-4
- Chan, R.H., Ma, S., Jang, J.F., 10.1137/15100463X, SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267. (2015) MR3404682DOI10.1137/15100463X
- Combettes, P.L., 10.1080/02331930412331327157, Optimization 53 (2004), 475–504. (2004) MR2115266DOI10.1080/02331930412331327157
- Combettes, P.L., Pesquet, J.-C., Proximal Splitting Methods in Signal Processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212. (2011) MR2858838
- Fichera, G., Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140. (1963) MR0178631
- Geobel, K., Kirk, W.A., Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. (1990) MR1074005
- Guo, Y., Cui, W., 10.1186/s13660-018-1695-x, J. Ineq. Appl. 2018 (2018). (2018) MR3797139DOI10.1186/s13660-018-1695-x
- Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M., 10.1007/s11075-018-0633-9, Numer. Algorithms (2018), https://doi.org/10.1007/s11075-018-0633-9. (2018) MR4027651DOI10.1007/s11075-018-0633-9
- Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T., 10.1515/apam-2017-0037, Adv. Pure Appl. Math. 9 (3) (2018), 167–183. (2018) MR3819533DOI10.1515/apam-2017-0037
- Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T., 10.1515/dema-2018-0015, Demonstratio Math. 51 (2018), 211–232. (2018) MR3856588DOI10.1515/dema-2018-0015
- Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T., A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize, Demonstratio Math. 52 (1) (2019), 183–203. (2019) MR3938331
- Lions, J.L., Stampacchia, G., 10.1002/cpa.3160200302, Comm. Pure Appl. Math. 20 (1967), 493–519. (1967) Zbl0152.34601MR0216344DOI10.1002/cpa.3160200302
- Lorenz, D., Pock, T., 10.1007/s10851-014-0523-2, J. Math. Imaging Vision 51 (2) (2015), 311–325. (2015) MR3314536DOI10.1007/s10851-014-0523-2
- Maingé, P.E., 10.1016/j.jmaa.2005.12.066, J. Math. Anal. Appl. 325 (2007), 469–479. (2007) MR2273538DOI10.1016/j.jmaa.2005.12.066
- Maingé, P.E., 10.1007/s11228-008-0102-z, Set-Valued Anal. 16 (2008), 899–912. (2008) MR2466027DOI10.1007/s11228-008-0102-z
- Martinez-Yanes, C., Xu, H.K., 10.1016/j.na.2005.08.018, Nonlinear Anal. 64 (2006), 2400–2411. (2006) MR2215815DOI10.1016/j.na.2005.08.018
- Meir, A., Keeler, E., 10.1016/0022-247X(69)90031-6, J. Math. Anal. Appl. 28 (1969), 326–329. (1969) MR0250291DOI10.1016/0022-247X(69)90031-6
- Mewomo, O.T., Ogbuisi, F.U., 10.2989/16073606.2017.1375569, Quaestiones Math. 41 (1) (2018), 129–148. (2018) MR3761493DOI10.2989/16073606.2017.1375569
- Moudafi, A., 10.1006/jmaa.1999.6615, J. Math. Anal. Appl. 241 (1) (2000), 46–55. (2000) MR1738332DOI10.1006/jmaa.1999.6615
- Moudafi, A., Oliny, M., 10.1016/S0377-0427(02)00906-8, J. Comput. Appl. Math. 155 (2003), 447–454. (2003) MR1984300DOI10.1016/S0377-0427(02)00906-8
- Moudafi, A., Thakur, B.S., 10.1007/s11590-013-0708-4, Optim. Lett. 8 (7) (2014), 2099–2110. (2014) MR3263242DOI10.1007/s11590-013-0708-4
- Nesterov, Y., A method for solving the convex programming problem with convergence rate , Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547. (1983) MR0701288
- Ogbuisi, F.U., Mewomo, O.T., 10.1007/s11784-016-0397-6, J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128. (2016) MR3692443DOI10.1007/s11784-016-0397-6
- Ogbuisi, F.U., Mewomo, O.T., 10.1007/s13370-016-0450-z, Afrika Mat. (3) 28 (1–2) (2017), 295–309. (2017) MR3613639DOI10.1007/s13370-016-0450-z
- Ogbuisi, F.U., Mewomo, O.T., 10.24193/fpt-ro.2018.1.26, Fixed Point Theory 19 (1) (2018), 335–358. (2018) MR3754008DOI10.24193/fpt-ro.2018.1.26
- Okeke, C.C., Mewomo, O.T., On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280. (2017) MR3742495
- Parith, N., Boyd, S., Proximal algorithms, Foundations and Trends in Optimization 1 (3) (2013), 123–231. (2013)
- Pesquet, J.-C., Putselnik, N., A parallel inertial proximal optimization method, Pacific J. Optim. 8 (2) (2012), 273–306. (2012) MR2954380
- Polyak, B.T., 10.1016/0041-5553(64)90137-5, U.S.S.R. Comput. Math. Math. Phys. 4 (5) (1964), 1–17. (1964) MR0169403DOI10.1016/0041-5553(64)90137-5
- Rockafellar, R.T., 10.1090/S0002-9947-1970-0282272-5, Trans. Amer. Math. Soc. 149 (1970), 75–88. (1970) MR0282272DOI10.1090/S0002-9947-1970-0282272-5
- Rockafellar, R.T., Wets, R., Variational Analysis, Springer, Berlin, 1988. (1988)
- Shehu, Y., 10.1007/s10013-014-0091-1, Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1. (2014) MR3386057DOI10.1007/s10013-014-0091-1
- Stampacchia, G., Formes bilinearies coercitives sur les ensembles convexes, Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416. (1964) MR0166591
- Su, M., Xu, H.K., Remarks on the gradient-projection algorithm, J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43. (2010) MR2911685
- Suzuki, T., 10.1016/j.jmaa.2006.01.080, J. Math. Anal. Appl. 325 (2007), 342–352. (2007) MR2273529DOI10.1016/j.jmaa.2006.01.080
- Takahashi, W., Wen, C.-F., Yao, J.-C., 10.24193/fpt-ro.2018.1.32, Fixed Point Theory 19 (1) (2018), 407–420. (2018) MR3754014DOI10.24193/fpt-ro.2018.1.32
- Tian, M., Huang, L.H., A general approximation method for a kind of convex optimization problems in Hilbert spaces, J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073. (2014) MR3198359
- Xu, H.K., 10.1016/j.jmaa.2004.04.059, J. Math. Anal. Appl. 298 (1) (2004), 279–291. (2004) MR2086546DOI10.1016/j.jmaa.2004.04.059
- Xu, H.K., 10.1007/s10957-011-9837-z, J. Optim. Theory Appl. 150 rm (2) (2011), 360–378. (2011) MR2818926DOI10.1007/s10957-011-9837-z
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.