Approximating solutions of split equality of some nonlinear optimization problems using an inertial algorithm
Lateef O. Jolaoso; Oluwatosin T. Mewomo
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 3, page 277-312
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topJolaoso, Lateef O., and Mewomo, Oluwatosin T.. "Approximating solutions of split equality of some nonlinear optimization problems using an inertial algorithm." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 277-312. <http://eudml.org/doc/297146>.
@article{Jolaoso2020,
abstract = {This paper presents an inertial iterative algorithm for approximating a common solution of split equalities of generalized mixed equilibrium problem, monotone variational inclusion problem, variational inequality problem and common fixed point problem in real Hilbert spaces. The algorithm is designed in such a way that it does not require prior knowledge of the norms of the bounded linear operators. We prove a strong convergence theorem under some mild conditions of the control sequences and also give a numerical example to show the efficiency and accuracy of our algorithm. We see that the inertial algorithm performs better in terms of number of iteration and CPU-time than the non-inertial algorithm. This result improves and generalizes many recent results in the literature.},
author = {Jolaoso, Lateef O., Mewomo, Oluwatosin T.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {split equality; generalized equilibrium problem; variational inclusion problem; variational inequality; quasi-nonexpansive mapping; fixed point problem},
language = {eng},
number = {3},
pages = {277-312},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Approximating solutions of split equality of some nonlinear optimization problems using an inertial algorithm},
url = {http://eudml.org/doc/297146},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Jolaoso, Lateef O.
AU - Mewomo, Oluwatosin T.
TI - Approximating solutions of split equality of some nonlinear optimization problems using an inertial algorithm
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 277
EP - 312
AB - This paper presents an inertial iterative algorithm for approximating a common solution of split equalities of generalized mixed equilibrium problem, monotone variational inclusion problem, variational inequality problem and common fixed point problem in real Hilbert spaces. The algorithm is designed in such a way that it does not require prior knowledge of the norms of the bounded linear operators. We prove a strong convergence theorem under some mild conditions of the control sequences and also give a numerical example to show the efficiency and accuracy of our algorithm. We see that the inertial algorithm performs better in terms of number of iteration and CPU-time than the non-inertial algorithm. This result improves and generalizes many recent results in the literature.
LA - eng
KW - split equality; generalized equilibrium problem; variational inclusion problem; variational inequality; quasi-nonexpansive mapping; fixed point problem
UR - http://eudml.org/doc/297146
ER -
References
top- Attouch H., Bolte J., Redont P., Soubeyran A., Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's, J. Convex Anal. 15 (2008), no. 3, 485–506. MR2431407
- Attouch H., Cabot A., Frankel P., Peypouquet J., Alternating proximal algorithms for linearly constrained variational inequalities: application to domain decomposition for PDE's, Nonlinear Anal. 74 (2011), no. 18, 7455–7473. MR2833727
- Attouch H., Czarnecki M. O., 10.1006/jdeq.2001.4034, J. Differential Equations 179 (2002), no. 1, 278–310. MR1883745DOI10.1006/jdeq.2001.4034
- Attouch H., Goudou X., Redont P., 10.1142/S0219199700000025, Commun. Contemp. Math. 2 (2000), no. 1, 1–34. MR1753136DOI10.1142/S0219199700000025
- Attouch H., Peypouquet J., Redont P., 10.1137/130910294, SIAM J. Optim. 24, (2014), no. 1, 232–256. MR3164130DOI10.1137/130910294
- Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1–4, 123–145. MR1292380
- Boţ R. I., Csetnek E. R., A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim. 36 (2015), no. 8, 951–963. MR3373745
- Boţ R. I., Csetnek E. R., 10.1007/s11075-015-0007-5, Numer. Algorithms 71 (2016), no. 3, 519–540. MR3463479DOI10.1007/s11075-015-0007-5
- Boţ R. I., Csetnek E. R., Hendrich C., Inertial Douglas–Rachford splitting for monotone inclusion problems, Appl. Math. Comput. 256 (2015), 472–487. MR3316085
- Boţ R. I., Csetnek E. R., László S. C., 10.1007/s13675-015-0045-8, EURO J. Comput. Optim. 4 (2016), no. 1, 3–25. MR3500980DOI10.1007/s13675-015-0045-8
- Byrne C. L., Moudafi A., Extensions of the CQ algorithm for the split feasibility and split equality problems, J. Nonlinear Convex Anal. 18 (2017), no. 8, 1485–1496. MR3716968
- Censor Y., 10.1007/BF01589408, Math. Programming 42 (1988), no. 2, (Ser. B), 307–325. MR0976123DOI10.1007/BF01589408
- Censor Y., Bortfeld T., Martin B., Trofimov A., 10.1088/0031-9155/51/10/001, Phys. Med. Biol. 51 (2006), no. 10, 2353–2365. DOI10.1088/0031-9155/51/10/001
- Chang S.-S., Wang L., Wang X. R., Wang G., 10.1007/s10957-015-0739-3, J. Optim. Theory Appl. 166 (2015), no. 2, 377–390. MR3371380DOI10.1007/s10957-015-0739-3
- Chen C., Chan R. H., Ma S., Yang J., 10.1137/15100463X, SIAM J. Imaging Sci. 8 (2015), no. 4, 2239–2267. MR3404682DOI10.1137/15100463X
- Cholamjiak W., Pholasa N., Suantai S., 10.1007/s40314-018-0661-z, Comput. Appl. Math. 37 (2018), no. 5, 5750–5774. MR3885793DOI10.1007/s40314-018-0661-z
- Chuang C.-S., 10.1080/02331934.2017.1306744, Optimization 66 (2017), no. 5, 777–792. MR3628551DOI10.1080/02331934.2017.1306744
- Dong Q.-L., Lu Y.-Y., Yang J., 10.1080/02331934.2016.1239266, Optimization 65 (2016), no. 12, 2217–2226. MR3564913DOI10.1080/02331934.2016.1239266
- Guo H., He H., Chen R., Strong convergence theorems for the split equality variational inclusion problem and fixed point problem in Hilbert spaces, Fixed Point Theory Appl. (2015), 2015:223, 18 pages. MR3430301
- He Z., The split equilibrium problem and its convergence algorithms, J. Inequal. Appl. (2012), 2012:162, 15 pages. MR2972645
- Jolaoso L. O., Abass H. A., Mewomo O. T., 10.5817/AM2019-3-167, Arch. Math. (Brno) 55 (2019), no. 3, 167–194. MR3994324DOI10.5817/AM2019-3-167
- Jolaoso L. O., Alakoya T. O., Taiwo A., Mewomo O. T., A parallel combination extragradient method with Armijo line searching for finding common solutions of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo (2) 69 (2019), 711–735. MR4168136
- Jolaoso L. O., Ogbuisi F. U., Mewomo O. T., 10.1515/apam-2017-0037, Adv. Pure Appl. Math. 9 (2018), no. 3, 167–184. MR3819533DOI10.1515/apam-2017-0037
- Jolaoso L. O., Oyewole K. O., Okeke C. C., Mewomo O. T., 10.1515/dema-2018-0015, Demonstr. Math. 51 (2018), no. 1, 211–232. MR3856588DOI10.1515/dema-2018-0015
- Jolaoso L. O., Taiwo A., Alakoya T. O., Mewomo O. T., 10.1515/dema-2019-0013, Demonstr. Math. 52 (2019), no. 1, 183–203. MR3938331DOI10.1515/dema-2019-0013
- Kazmi K. R., Rizvi S. H., 10.1007/s11590-013-0629-2, Optim. Lett. 8 (2014), no. 3, 1113–1124. MR3170590DOI10.1007/s11590-013-0629-2
- Latif A., Eslamian M., 10.22436/jnsa.010.06.34, J. Nonlinear Sci. Appl. 10 (2017), no. 6, 3217–3230. MR3670500DOI10.22436/jnsa.010.06.34
- Lemaire B., 10.1007/978-3-642-59073-3_11, Recent Advances in Optimization, Trier, 1996, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997, pages 154–157. MR1467027DOI10.1007/978-3-642-59073-3_11
- Li S., Li L., Cao L., He X., Yue X., Hybrid extragradient method for generalized mixed equilibrium problem and fixed point problems in Hilbert space, Fixed Point Theory Appl. (2013), 2013:240, 13 pages. MR3261016
- Lin L.-J., Chen Y.-D., Chuang C.-S., Solutions for a variational inclusion problem with applications to multiple sets split feasibility problems, Fixed Point Theory Appl. (2013), 2013:333, 21 pages. MR3338266
- López G., Martín-Márquez V., Wang F., Xu H.-K., Solving the split feasibility problem without prior knowledge of matrix norm, Inverse Problems 28 (2012), no. 8, 085004, 18 pages. MR2948743
- Ma Z., Wang L., Chang S.-S., Duan W., Convergence theorems for split equality mixed equilibrium problems with applications, Fixed Point Theory Appl. (2015), 2015:31, 18 pages. MR3316770
- Maingé P.-E., 10.1016/j.jmaa.2005.12.066, J. Math. Anal. Appl. 325 (2007), no. 1, 469–479. MR2273538DOI10.1016/j.jmaa.2005.12.066
- Maingé P.-E., 10.1007/s11228-008-0102-z, Set-Valued Anal. 16 (2008), no. 7–8, 899–912. MR2466027DOI10.1007/s11228-008-0102-z
- Marino G., Xu H.-K., 10.1016/j.jmaa.2006.06.055, J. Math. Anal. Appl. 329 (2007), no. 1, 336–346. MR2306805DOI10.1016/j.jmaa.2006.06.055
- Matinez-Yanes C., Xu H.-K., 10.1016/j.na.2005.08.018, Nonlinear Anal. 64 (2006), no. 11, 2400–2411. MR2215815DOI10.1016/j.na.2005.08.018
- Mewomo O. T., Ogbuisi F. U., 10.2989/16073606.2017.1375569, Quaest. Math. 41 (2018), no. 1, 129–148. MR3761493DOI10.2989/16073606.2017.1375569
- Moudafi A., 10.1016/j.na.2011.03.041, Nonlinear Anal. 74 (2011), no. 12, 4083–4087. MR2802988DOI10.1016/j.na.2011.03.041
- Moudafi A., 10.1007/s10957-011-9814-6, J. Optim. Theory Appl. 150 (2011), no. 2, 275–283. MR2818920DOI10.1007/s10957-011-9814-6
- Moudafi A., Alternating CQ-algorithms for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal. 15 (2014), no. 4, 809–818. MR3222909
- Moudafi A., Al-Shemas E., Simultaneous iterative methods for split equality problems and applications, Trans. Math. Program. Appl. 1 (2013), 1–11.
- Ochs P., Brox T., Pock T., 10.1007/s10851-015-0565-0, J. Math. Imaging Vision 53 (2015), no. 2, 171–181. MR3372139DOI10.1007/s10851-015-0565-0
- Rahaman M., Liou Y.-C., Ahmad R., Ahmad I., Convergence theorems for split equality generalized mixed equilibrium problems for demi-contractive mappings, J. Inequal. Appl. (2015), 2015:418, 25 pages. MR3438079
- Rockafellar R. T., 10.1137/0314056, SIAM J. Control. Optim. 14 (1976), no. 5, 877–898. MR0410483DOI10.1137/0314056
- Shehu Y., Mewomo O. T., 10.1007/s10114-016-5548-6, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 11, 1357–1376. MR3557403DOI10.1007/s10114-016-5548-6
- Shehu Y., Mewomo O. T., Ogbuisi F. U., Further investigation into approximation of a common solution of fixed point problems and split feasibility problems, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 3, 913–930. MR3479264
- Shukla R., Pant R., 10.1007/s40314-018-0637-z, Comput. Appl. Math. 37 (2018), no. 4, 5293–5314. MR3848595DOI10.1007/s40314-018-0637-z
- Taiwo A., Jolaoso L. O., Mewomo O. T., 10.1007/s40314-019-0841-5, Comput. Appl. Math. 38 (2019), no. 2, Paper No. 77, 28 pages. MR3933584DOI10.1007/s40314-019-0841-5
- Taiwo A., Jolaoso L. O., Mewomo O. T., 10.1007/s40840-019-00781-1, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1893–1918. MR4061458DOI10.1007/s40840-019-00781-1
- Thong D. V., Hieu D. V., 10.1007/s11784-017-0464-7, J. Fixed Point Theory Appl. 19 (2017), no. 4, 3029–3051. MR3720493DOI10.1007/s11784-017-0464-7
- Thong D. V., Hieu D. V., 10.1007/s11075-018-0527-x, Numer. Algorithms 80 (2019), no. 4, 1283–1307. MR3927234DOI10.1007/s11075-018-0527-x
- Zegeye H., Shahzad N., 10.1016/j.camwa.2011.09.018, Comput. Math. Appl. 62 (2011), no. 11, 4007–4014. MR2859956DOI10.1016/j.camwa.2011.09.018
- Zhao J., 10.1080/02331934.2014.883515, Optimization 64 (2015), no. 12, 2619–2630. MR3411824DOI10.1080/02331934.2014.883515
- Zhao J., He S., Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings, J. Appl. Math. 2012 (2012), Art. ID 438023, 12 pages. MR2904520
- Zhao J., Wang S., Viscosity approximation methods for the split equality common fixed point problem of quasi-nonexpansive operators, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 5, 1474–1486. MR3529631
- Zhao J., Yang Q., 10.1080/17415977.2012.712521, Inverse Probl. Sci. Eng. 21 (2013), no. 3, 537–546. MR3022436DOI10.1080/17415977.2012.712521
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.