Approximating solutions of split equality of some nonlinear optimization problems using an inertial algorithm

Lateef O. Jolaoso; Oluwatosin T. Mewomo

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 3, page 277-312
  • ISSN: 0010-2628

Abstract

top
This paper presents an inertial iterative algorithm for approximating a common solution of split equalities of generalized mixed equilibrium problem, monotone variational inclusion problem, variational inequality problem and common fixed point problem in real Hilbert spaces. The algorithm is designed in such a way that it does not require prior knowledge of the norms of the bounded linear operators. We prove a strong convergence theorem under some mild conditions of the control sequences and also give a numerical example to show the efficiency and accuracy of our algorithm. We see that the inertial algorithm performs better in terms of number of iteration and CPU-time than the non-inertial algorithm. This result improves and generalizes many recent results in the literature.

How to cite

top

Jolaoso, Lateef O., and Mewomo, Oluwatosin T.. "Approximating solutions of split equality of some nonlinear optimization problems using an inertial algorithm." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 277-312. <http://eudml.org/doc/297146>.

@article{Jolaoso2020,
abstract = {This paper presents an inertial iterative algorithm for approximating a common solution of split equalities of generalized mixed equilibrium problem, monotone variational inclusion problem, variational inequality problem and common fixed point problem in real Hilbert spaces. The algorithm is designed in such a way that it does not require prior knowledge of the norms of the bounded linear operators. We prove a strong convergence theorem under some mild conditions of the control sequences and also give a numerical example to show the efficiency and accuracy of our algorithm. We see that the inertial algorithm performs better in terms of number of iteration and CPU-time than the non-inertial algorithm. This result improves and generalizes many recent results in the literature.},
author = {Jolaoso, Lateef O., Mewomo, Oluwatosin T.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {split equality; generalized equilibrium problem; variational inclusion problem; variational inequality; quasi-nonexpansive mapping; fixed point problem},
language = {eng},
number = {3},
pages = {277-312},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Approximating solutions of split equality of some nonlinear optimization problems using an inertial algorithm},
url = {http://eudml.org/doc/297146},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Jolaoso, Lateef O.
AU - Mewomo, Oluwatosin T.
TI - Approximating solutions of split equality of some nonlinear optimization problems using an inertial algorithm
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 277
EP - 312
AB - This paper presents an inertial iterative algorithm for approximating a common solution of split equalities of generalized mixed equilibrium problem, monotone variational inclusion problem, variational inequality problem and common fixed point problem in real Hilbert spaces. The algorithm is designed in such a way that it does not require prior knowledge of the norms of the bounded linear operators. We prove a strong convergence theorem under some mild conditions of the control sequences and also give a numerical example to show the efficiency and accuracy of our algorithm. We see that the inertial algorithm performs better in terms of number of iteration and CPU-time than the non-inertial algorithm. This result improves and generalizes many recent results in the literature.
LA - eng
KW - split equality; generalized equilibrium problem; variational inclusion problem; variational inequality; quasi-nonexpansive mapping; fixed point problem
UR - http://eudml.org/doc/297146
ER -

References

top
  1. Attouch H., Bolte J., Redont P., Soubeyran A., Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's, J. Convex Anal. 15 (2008), no. 3, 485–506. MR2431407
  2. Attouch H., Cabot A., Frankel P., Peypouquet J., Alternating proximal algorithms for linearly constrained variational inequalities: application to domain decomposition for PDE's, Nonlinear Anal. 74 (2011), no. 18, 7455–7473. MR2833727
  3. Attouch H., Czarnecki M. O., 10.1006/jdeq.2001.4034, J. Differential Equations 179 (2002), no. 1, 278–310. MR1883745DOI10.1006/jdeq.2001.4034
  4. Attouch H., Goudou X., Redont P., 10.1142/S0219199700000025, Commun. Contemp. Math. 2 (2000), no. 1, 1–34. MR1753136DOI10.1142/S0219199700000025
  5. Attouch H., Peypouquet J., Redont P., 10.1137/130910294, SIAM J. Optim. 24, (2014), no. 1, 232–256. MR3164130DOI10.1137/130910294
  6. Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1–4, 123–145. MR1292380
  7. Boţ R. I., Csetnek E. R., A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim. 36 (2015), no. 8, 951–963. MR3373745
  8. Boţ R. I., Csetnek E. R., 10.1007/s11075-015-0007-5, Numer. Algorithms 71 (2016), no. 3, 519–540. MR3463479DOI10.1007/s11075-015-0007-5
  9. Boţ R. I., Csetnek E. R., Hendrich C., Inertial Douglas–Rachford splitting for monotone inclusion problems, Appl. Math. Comput. 256 (2015), 472–487. MR3316085
  10. Boţ R. I., Csetnek E. R., László S. C., 10.1007/s13675-015-0045-8, EURO J. Comput. Optim. 4 (2016), no. 1, 3–25. MR3500980DOI10.1007/s13675-015-0045-8
  11. Byrne C. L., Moudafi A., Extensions of the CQ algorithm for the split feasibility and split equality problems, J. Nonlinear Convex Anal. 18 (2017), no. 8, 1485–1496. MR3716968
  12. Censor Y., 10.1007/BF01589408, Math. Programming 42 (1988), no. 2, (Ser. B), 307–325. MR0976123DOI10.1007/BF01589408
  13. Censor Y., Bortfeld T., Martin B., Trofimov A., 10.1088/0031-9155/51/10/001, Phys. Med. Biol. 51 (2006), no. 10, 2353–2365. DOI10.1088/0031-9155/51/10/001
  14. Chang S.-S., Wang L., Wang X. R., Wang G., 10.1007/s10957-015-0739-3, J. Optim. Theory Appl. 166 (2015), no. 2, 377–390. MR3371380DOI10.1007/s10957-015-0739-3
  15. Chen C., Chan R. H., Ma S., Yang J., 10.1137/15100463X, SIAM J. Imaging Sci. 8 (2015), no. 4, 2239–2267. MR3404682DOI10.1137/15100463X
  16. Cholamjiak W., Pholasa N., Suantai S., 10.1007/s40314-018-0661-z, Comput. Appl. Math. 37 (2018), no. 5, 5750–5774. MR3885793DOI10.1007/s40314-018-0661-z
  17. Chuang C.-S., 10.1080/02331934.2017.1306744, Optimization 66 (2017), no. 5, 777–792. MR3628551DOI10.1080/02331934.2017.1306744
  18. Dong Q.-L., Lu Y.-Y., Yang J., 10.1080/02331934.2016.1239266, Optimization 65 (2016), no. 12, 2217–2226. MR3564913DOI10.1080/02331934.2016.1239266
  19. Guo H., He H., Chen R., Strong convergence theorems for the split equality variational inclusion problem and fixed point problem in Hilbert spaces, Fixed Point Theory Appl. (2015), 2015:223, 18 pages. MR3430301
  20. He Z., The split equilibrium problem and its convergence algorithms, J. Inequal. Appl. (2012), 2012:162, 15 pages. MR2972645
  21. Jolaoso L. O., Abass H. A., Mewomo O. T., 10.5817/AM2019-3-167, Arch. Math. (Brno) 55 (2019), no. 3, 167–194. MR3994324DOI10.5817/AM2019-3-167
  22. Jolaoso L. O., Alakoya T. O., Taiwo A., Mewomo O. T., A parallel combination extragradient method with Armijo line searching for finding common solutions of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo (2) 69 (2019), 711–735. MR4168136
  23. Jolaoso L. O., Ogbuisi F. U., Mewomo O. T., 10.1515/apam-2017-0037, Adv. Pure Appl. Math. 9 (2018), no. 3, 167–184. MR3819533DOI10.1515/apam-2017-0037
  24. Jolaoso L. O., Oyewole K. O., Okeke C. C., Mewomo O. T., 10.1515/dema-2018-0015, Demonstr. Math. 51 (2018), no. 1, 211–232. MR3856588DOI10.1515/dema-2018-0015
  25. Jolaoso L. O., Taiwo A., Alakoya T. O., Mewomo O. T., 10.1515/dema-2019-0013, Demonstr. Math. 52 (2019), no. 1, 183–203. MR3938331DOI10.1515/dema-2019-0013
  26. Kazmi K. R., Rizvi S. H., 10.1007/s11590-013-0629-2, Optim. Lett. 8 (2014), no. 3, 1113–1124. MR3170590DOI10.1007/s11590-013-0629-2
  27. Latif A., Eslamian M., 10.22436/jnsa.010.06.34, J. Nonlinear Sci. Appl. 10 (2017), no. 6, 3217–3230. MR3670500DOI10.22436/jnsa.010.06.34
  28. Lemaire B., 10.1007/978-3-642-59073-3_11, Recent Advances in Optimization, Trier, 1996, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997, pages 154–157. MR1467027DOI10.1007/978-3-642-59073-3_11
  29. Li S., Li L., Cao L., He X., Yue X., Hybrid extragradient method for generalized mixed equilibrium problem and fixed point problems in Hilbert space, Fixed Point Theory Appl. (2013), 2013:240, 13 pages. MR3261016
  30. Lin L.-J., Chen Y.-D., Chuang C.-S., Solutions for a variational inclusion problem with applications to multiple sets split feasibility problems, Fixed Point Theory Appl. (2013), 2013:333, 21 pages. MR3338266
  31. López G., Martín-Márquez V., Wang F., Xu H.-K., Solving the split feasibility problem without prior knowledge of matrix norm, Inverse Problems 28 (2012), no. 8, 085004, 18 pages. MR2948743
  32. Ma Z., Wang L., Chang S.-S., Duan W., Convergence theorems for split equality mixed equilibrium problems with applications, Fixed Point Theory Appl. (2015), 2015:31, 18 pages. MR3316770
  33. Maingé P.-E., 10.1016/j.jmaa.2005.12.066, J. Math. Anal. Appl. 325 (2007), no. 1, 469–479. MR2273538DOI10.1016/j.jmaa.2005.12.066
  34. Maingé P.-E., 10.1007/s11228-008-0102-z, Set-Valued Anal. 16 (2008), no. 7–8, 899–912. MR2466027DOI10.1007/s11228-008-0102-z
  35. Marino G., Xu H.-K., 10.1016/j.jmaa.2006.06.055, J. Math. Anal. Appl. 329 (2007), no. 1, 336–346. MR2306805DOI10.1016/j.jmaa.2006.06.055
  36. Matinez-Yanes C., Xu H.-K., 10.1016/j.na.2005.08.018, Nonlinear Anal. 64 (2006), no. 11, 2400–2411. MR2215815DOI10.1016/j.na.2005.08.018
  37. Mewomo O. T., Ogbuisi F. U., 10.2989/16073606.2017.1375569, Quaest. Math. 41 (2018), no. 1, 129–148. MR3761493DOI10.2989/16073606.2017.1375569
  38. Moudafi A., 10.1016/j.na.2011.03.041, Nonlinear Anal. 74 (2011), no. 12, 4083–4087. MR2802988DOI10.1016/j.na.2011.03.041
  39. Moudafi A., 10.1007/s10957-011-9814-6, J. Optim. Theory Appl. 150 (2011), no. 2, 275–283. MR2818920DOI10.1007/s10957-011-9814-6
  40. Moudafi A., Alternating CQ-algorithms for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal. 15 (2014), no. 4, 809–818. MR3222909
  41. Moudafi A., Al-Shemas E., Simultaneous iterative methods for split equality problems and applications, Trans. Math. Program. Appl. 1 (2013), 1–11. 
  42. Ochs P., Brox T., Pock T., 10.1007/s10851-015-0565-0, J. Math. Imaging Vision 53 (2015), no. 2, 171–181. MR3372139DOI10.1007/s10851-015-0565-0
  43. Rahaman M., Liou Y.-C., Ahmad R., Ahmad I., Convergence theorems for split equality generalized mixed equilibrium problems for demi-contractive mappings, J. Inequal. Appl. (2015), 2015:418, 25 pages. MR3438079
  44. Rockafellar R. T., 10.1137/0314056, SIAM J. Control. Optim. 14 (1976), no. 5, 877–898. MR0410483DOI10.1137/0314056
  45. Shehu Y., Mewomo O. T., 10.1007/s10114-016-5548-6, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 11, 1357–1376. MR3557403DOI10.1007/s10114-016-5548-6
  46. Shehu Y., Mewomo O. T., Ogbuisi F. U., Further investigation into approximation of a common solution of fixed point problems and split feasibility problems, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 3, 913–930. MR3479264
  47. Shukla R., Pant R., 10.1007/s40314-018-0637-z, Comput. Appl. Math. 37 (2018), no. 4, 5293–5314. MR3848595DOI10.1007/s40314-018-0637-z
  48. Taiwo A., Jolaoso L. O., Mewomo O. T., 10.1007/s40314-019-0841-5, Comput. Appl. Math. 38 (2019), no. 2, Paper No. 77, 28 pages. MR3933584DOI10.1007/s40314-019-0841-5
  49. Taiwo A., Jolaoso L. O., Mewomo O. T., 10.1007/s40840-019-00781-1, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1893–1918. MR4061458DOI10.1007/s40840-019-00781-1
  50. Thong D. V., Hieu D. V., 10.1007/s11784-017-0464-7, J. Fixed Point Theory Appl. 19 (2017), no. 4, 3029–3051. MR3720493DOI10.1007/s11784-017-0464-7
  51. Thong D. V., Hieu D. V., 10.1007/s11075-018-0527-x, Numer. Algorithms 80 (2019), no. 4, 1283–1307. MR3927234DOI10.1007/s11075-018-0527-x
  52. Zegeye H., Shahzad N., 10.1016/j.camwa.2011.09.018, Comput. Math. Appl. 62 (2011), no. 11, 4007–4014. MR2859956DOI10.1016/j.camwa.2011.09.018
  53. Zhao J., 10.1080/02331934.2014.883515, Optimization 64 (2015), no. 12, 2619–2630. MR3411824DOI10.1080/02331934.2014.883515
  54. Zhao J., He S., Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings, J. Appl. Math. 2012 (2012), Art. ID 438023, 12 pages. MR2904520
  55. Zhao J., Wang S., Viscosity approximation methods for the split equality common fixed point problem of quasi-nonexpansive operators, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 5, 1474–1486. MR3529631
  56. Zhao J., Yang Q., 10.1080/17415977.2012.712521, Inverse Probl. Sci. Eng. 21 (2013), no. 3, 537–546. MR3022436DOI10.1080/17415977.2012.712521

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.