The spectral determinations of the connected multicone graphs K w m P 17 and K w m S

Ali Zeydi Abdian; S. Morteza Mirafzal

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 4, page 1091-1104
  • ISSN: 0011-4642

Abstract

top
Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let K w denote a complete graph on w vertices, and let m be a positive integer number. In A. Z. Abdian (2016) it has been shown that multicone graphs K w P 17 and K w S are determined by both their adjacency and Laplacian spectra, where P 17 and S denote the Paley graph of order 17 and the Schläfli graph, respectively. In this paper, we generalize these results and we prove that multicone graphs K w m P 17 and K w m S are determined by their adjacency spectra as well as their Laplacian spectra.

How to cite

top

Abdian, Ali Zeydi, and Mirafzal, S. Morteza. "The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $." Czechoslovak Mathematical Journal 68.4 (2018): 1091-1104. <http://eudml.org/doc/294845>.

@article{Abdian2018,
abstract = {Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let $ K_w $ denote a complete graph on $ w $ vertices, and let $ m $ be a positive integer number. In A. Z. Abdian (2016) it has been shown that multicone graphs $ K_w\bigtriangledown P_\{17\}$ and $ K_w\bigtriangledown S$ are determined by both their adjacency and Laplacian spectra, where $ P_\{17\} $ and $ S$ denote the Paley graph of order 17 and the Schläfli graph, respectively. In this paper, we generalize these results and we prove that multicone graphs $ K_w\bigtriangledown mP_\{17\}$ and $ K_w\bigtriangledown mS$ are determined by their adjacency spectra as well as their Laplacian spectra.},
author = {Abdian, Ali Zeydi, Mirafzal, S. Morteza},
journal = {Czechoslovak Mathematical Journal},
keywords = {DS (determined by spectrum) graph; Schläfli graph; multicone graph; adjacency spectrum; Laplacian spectrum; Paley graph of order 17},
language = {eng},
number = {4},
pages = {1091-1104},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_\{17\} $ and $ K_w\bigtriangledown mS $},
url = {http://eudml.org/doc/294845},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Abdian, Ali Zeydi
AU - Mirafzal, S. Morteza
TI - The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1091
EP - 1104
AB - Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let $ K_w $ denote a complete graph on $ w $ vertices, and let $ m $ be a positive integer number. In A. Z. Abdian (2016) it has been shown that multicone graphs $ K_w\bigtriangledown P_{17}$ and $ K_w\bigtriangledown S$ are determined by both their adjacency and Laplacian spectra, where $ P_{17} $ and $ S$ denote the Paley graph of order 17 and the Schläfli graph, respectively. In this paper, we generalize these results and we prove that multicone graphs $ K_w\bigtriangledown mP_{17}$ and $ K_w\bigtriangledown mS$ are determined by their adjacency spectra as well as their Laplacian spectra.
LA - eng
KW - DS (determined by spectrum) graph; Schläfli graph; multicone graph; adjacency spectrum; Laplacian spectrum; Paley graph of order 17
UR - http://eudml.org/doc/294845
ER -

References

top
  1. Abdian, A. Z., Graphs which are determined by their spectrum, Konuralp J. Math. 4 (2016), 34-41. (2016) Zbl1355.05152MR3571504
  2. Abdian, A. Z., Two classes of multicone graphs determined by their spectra, J. Math. Ext. 10 (2016), 111-121. (2016) MR3621464
  3. Abdian, A. Z., Graphs cospectral with multicone graphs K w L ( P ) , TWMS. J. App. Eng. Math. 7 (2017), 181-187. (2017) MR3741897
  4. Abdian, A. Z., The spectral determinations of the multicone graphs K w P , Avaible at https://arxiv.org/abs/1706.02661 (2017). (2017) MR3948630
  5. Abdian, A. Z., Mirafzal, S. M., On new classes of multicone graphs determined by their spectrums, Alg. Struc. Appl. 2 (2015), 23-34. (2015) MR3571504
  6. Abdian, A. Z., Mirafzal, S. M., 10.1142/S1793830918500192, Discrete Math. Algorithms Appl. 10 (2018), Article ID 1850019. (2018) Zbl1383.05190MR3786377DOI10.1142/S1793830918500192
  7. Abdollahi, A., Janbaz, S., Oboudi, M. R., Graphs cospectral with a friendship graph or its complement, Trans. Comb. 2 (2013), 37-52. (2013) Zbl1302.05083MR3150451
  8. Bapat, R. B., 10.1007/978-1-4471-6569-9, Universitext, Springer, London; Hindustan Book Agency, New Delhi (2014). (2014) Zbl1301.05001MR3289036DOI10.1007/978-1-4471-6569-9
  9. Biggs, N., 10.1017/CBO9780511608704, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1994). (1994) Zbl0797.05032MR1271140DOI10.1017/CBO9780511608704
  10. Boulet, R., Jouve, B., The lollipop graph is determined by its spectrum, Electron. J. Comb. 15 (2008), Researh Paper 74, 43 pages. (2008) Zbl1163.05324MR2411451
  11. Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext, Springer, New York (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
  12. Cioabă, S. M., Haemers, W. H., Vermette, J. R., Wong, W., 10.1007/s10801-014-0557-y, J. Algebr. Comb. 41 (2015), 887-897. (2015) Zbl1317.05111MR3328184DOI10.1007/s10801-014-0557-y
  13. Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9780511801518, London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608DOI10.1017/CBO9780511801518
  14. Das, K. C., 10.1016/j.disc.2012.09.017, Discrete Math. 313 (2013), 19-25. (2013) Zbl1254.05099MR3016969DOI10.1016/j.disc.2012.09.017
  15. Doob, M., Haemers, W. H., 10.1016/S0024-3795(02)00323-3, Linear Algebra Appl. 356 (2002), 57-65. (2002) Zbl1015.05047MR1944676DOI10.1016/S0024-3795(02)00323-3
  16. Günthard, H. H., Primas, H., 10.1002/hlca.19560390623, Helv. Chim. Acta. German 39 (1956), 1645-1653. (1956) DOI10.1002/hlca.19560390623
  17. Haemers, W. H., Liu, X., Zhang, Y., 10.1016/j.laa.2007.10.018, Linear Algebra Appl. 428 (2008), 2415-2423. (2008) Zbl1226.05156MR2416560DOI10.1016/j.laa.2007.10.018
  18. Knauer, U., 10.1515/9783110255096, De Gruyter Studies in Mathematics 41, Walter de Gruyter, Berlin (2011). (2011) Zbl1338.05001MR2848562DOI10.1515/9783110255096
  19. Liu, Y., Sun, Y. Q., 10.1007/s10587-010-0043-1, Czech. Math. J. 60 (2010), 401-410. (2010) Zbl1224.05312MR2657957DOI10.1007/s10587-010-0043-1
  20. Merris, R., 10.1016/0024-3795(94)90486-3, Linear Algebra Appl. 197/198 (1994), 143-176. (1994) Zbl0802.05053MR1275613DOI10.1016/0024-3795(94)90486-3
  21. Mirafzal, S. M., Abdian, A. Z., 10.24193/subbmath.2017.3.01, Stud. Univ. Babeş-Bolyai Math. 62 (2017), 275-286. (2017) Zbl06847482MR3714100DOI10.24193/subbmath.2017.3.01
  22. Peisert, W., 10.1006/jabr.2000.8714, J. Algebra 240 (2001), 209-229. (2001) Zbl1021.05051MR1830551DOI10.1006/jabr.2000.8714
  23. Rowlinson, P., 10.2298/AADM0702445R, Appl. Anal. Discrete Math. 1 (2007), 445-471. (2007) Zbl1199.05241MR2355287DOI10.2298/AADM0702445R
  24. Dam, E. R. van, 10.1006/jctb.1998.1815, J. Comb. Theory, Ser. B 73 (1998), 101-118. (1998) Zbl0917.05044MR1631983DOI10.1006/jctb.1998.1815
  25. Dam, E. R. van, Haemers, W. H., 10.1016/S0024-3795(03)00483-X, Linear Algebra Appl. 373 (2003), 241-272. (2003) Zbl1026.05079MR2022290DOI10.1016/S0024-3795(03)00483-X
  26. Dam, E. R. van, Haemers, W. H., 10.1016/j.disc.2008.08.019, Discrete Math. 309 (2009), 576-586. (2009) Zbl1205.05156MR2499010DOI10.1016/j.disc.2008.08.019
  27. Wang, J., Belardo, F., Huang, Q., Borovićanin, B., 10.1016/j.disc.2010.06.030, Discrete Math. 310 (2010), 2858-2866. (2010) Zbl1208.05079MR2677645DOI10.1016/j.disc.2010.06.030
  28. Wang, W., Xu, C., 10.1016/j.ejc.2005.05.004, Eur. J. Comb. 27 (2006), 826-840. (2006) Zbl1092.05050MR2226420DOI10.1016/j.ejc.2005.05.004
  29. Wang, J., Zhao, H., Huang, Q., 10.1007/s10587-012-0021-x, Czech. Math. J. 62 (2012), 117-126. (2012) Zbl1249.05256MR2899739DOI10.1007/s10587-012-0021-x
  30. West, D. B., Introduction to Graph Theory, Prentice-Hall of India, New Delhi (2005). (2005) Zbl1121.05304MR1367739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.