The spectral determinations of the connected multicone graphs and
Ali Zeydi Abdian; S. Morteza Mirafzal
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 4, page 1091-1104
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbdian, Ali Zeydi, and Mirafzal, S. Morteza. "The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $." Czechoslovak Mathematical Journal 68.4 (2018): 1091-1104. <http://eudml.org/doc/294845>.
@article{Abdian2018,
abstract = {Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let $ K_w $ denote a complete graph on $ w $ vertices, and let $ m $ be a positive integer number. In A. Z. Abdian (2016) it has been shown that multicone graphs $ K_w\bigtriangledown P_\{17\}$ and $ K_w\bigtriangledown S$ are determined by both their adjacency and Laplacian spectra, where $ P_\{17\} $ and $ S$ denote the Paley graph of order 17 and the Schläfli graph, respectively. In this paper, we generalize these results and we prove that multicone graphs $ K_w\bigtriangledown mP_\{17\}$ and $ K_w\bigtriangledown mS$ are determined by their adjacency spectra as well as their Laplacian spectra.},
author = {Abdian, Ali Zeydi, Mirafzal, S. Morteza},
journal = {Czechoslovak Mathematical Journal},
keywords = {DS (determined by spectrum) graph; Schläfli graph; multicone graph; adjacency spectrum; Laplacian spectrum; Paley graph of order 17},
language = {eng},
number = {4},
pages = {1091-1104},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_\{17\} $ and $ K_w\bigtriangledown mS $},
url = {http://eudml.org/doc/294845},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Abdian, Ali Zeydi
AU - Mirafzal, S. Morteza
TI - The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1091
EP - 1104
AB - Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let $ K_w $ denote a complete graph on $ w $ vertices, and let $ m $ be a positive integer number. In A. Z. Abdian (2016) it has been shown that multicone graphs $ K_w\bigtriangledown P_{17}$ and $ K_w\bigtriangledown S$ are determined by both their adjacency and Laplacian spectra, where $ P_{17} $ and $ S$ denote the Paley graph of order 17 and the Schläfli graph, respectively. In this paper, we generalize these results and we prove that multicone graphs $ K_w\bigtriangledown mP_{17}$ and $ K_w\bigtriangledown mS$ are determined by their adjacency spectra as well as their Laplacian spectra.
LA - eng
KW - DS (determined by spectrum) graph; Schläfli graph; multicone graph; adjacency spectrum; Laplacian spectrum; Paley graph of order 17
UR - http://eudml.org/doc/294845
ER -
References
top- Abdian, A. Z., Graphs which are determined by their spectrum, Konuralp J. Math. 4 (2016), 34-41. (2016) Zbl1355.05152MR3571504
- Abdian, A. Z., Two classes of multicone graphs determined by their spectra, J. Math. Ext. 10 (2016), 111-121. (2016) MR3621464
- Abdian, A. Z., Graphs cospectral with multicone graphs , TWMS. J. App. Eng. Math. 7 (2017), 181-187. (2017) MR3741897
- Abdian, A. Z., The spectral determinations of the multicone graphs , Avaible at https://arxiv.org/abs/1706.02661 (2017). (2017) MR3948630
- Abdian, A. Z., Mirafzal, S. M., On new classes of multicone graphs determined by their spectrums, Alg. Struc. Appl. 2 (2015), 23-34. (2015) MR3571504
- Abdian, A. Z., Mirafzal, S. M., 10.1142/S1793830918500192, Discrete Math. Algorithms Appl. 10 (2018), Article ID 1850019. (2018) Zbl1383.05190MR3786377DOI10.1142/S1793830918500192
- Abdollahi, A., Janbaz, S., Oboudi, M. R., Graphs cospectral with a friendship graph or its complement, Trans. Comb. 2 (2013), 37-52. (2013) Zbl1302.05083MR3150451
- Bapat, R. B., 10.1007/978-1-4471-6569-9, Universitext, Springer, London; Hindustan Book Agency, New Delhi (2014). (2014) Zbl1301.05001MR3289036DOI10.1007/978-1-4471-6569-9
- Biggs, N., 10.1017/CBO9780511608704, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1994). (1994) Zbl0797.05032MR1271140DOI10.1017/CBO9780511608704
- Boulet, R., Jouve, B., The lollipop graph is determined by its spectrum, Electron. J. Comb. 15 (2008), Researh Paper 74, 43 pages. (2008) Zbl1163.05324MR2411451
- Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext, Springer, New York (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
- Cioabă, S. M., Haemers, W. H., Vermette, J. R., Wong, W., 10.1007/s10801-014-0557-y, J. Algebr. Comb. 41 (2015), 887-897. (2015) Zbl1317.05111MR3328184DOI10.1007/s10801-014-0557-y
- Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9780511801518, London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608DOI10.1017/CBO9780511801518
- Das, K. C., 10.1016/j.disc.2012.09.017, Discrete Math. 313 (2013), 19-25. (2013) Zbl1254.05099MR3016969DOI10.1016/j.disc.2012.09.017
- Doob, M., Haemers, W. H., 10.1016/S0024-3795(02)00323-3, Linear Algebra Appl. 356 (2002), 57-65. (2002) Zbl1015.05047MR1944676DOI10.1016/S0024-3795(02)00323-3
- Günthard, H. H., Primas, H., 10.1002/hlca.19560390623, Helv. Chim. Acta. German 39 (1956), 1645-1653. (1956) DOI10.1002/hlca.19560390623
- Haemers, W. H., Liu, X., Zhang, Y., 10.1016/j.laa.2007.10.018, Linear Algebra Appl. 428 (2008), 2415-2423. (2008) Zbl1226.05156MR2416560DOI10.1016/j.laa.2007.10.018
- Knauer, U., 10.1515/9783110255096, De Gruyter Studies in Mathematics 41, Walter de Gruyter, Berlin (2011). (2011) Zbl1338.05001MR2848562DOI10.1515/9783110255096
- Liu, Y., Sun, Y. Q., 10.1007/s10587-010-0043-1, Czech. Math. J. 60 (2010), 401-410. (2010) Zbl1224.05312MR2657957DOI10.1007/s10587-010-0043-1
- Merris, R., 10.1016/0024-3795(94)90486-3, Linear Algebra Appl. 197/198 (1994), 143-176. (1994) Zbl0802.05053MR1275613DOI10.1016/0024-3795(94)90486-3
- Mirafzal, S. M., Abdian, A. Z., 10.24193/subbmath.2017.3.01, Stud. Univ. Babeş-Bolyai Math. 62 (2017), 275-286. (2017) Zbl06847482MR3714100DOI10.24193/subbmath.2017.3.01
- Peisert, W., 10.1006/jabr.2000.8714, J. Algebra 240 (2001), 209-229. (2001) Zbl1021.05051MR1830551DOI10.1006/jabr.2000.8714
- Rowlinson, P., 10.2298/AADM0702445R, Appl. Anal. Discrete Math. 1 (2007), 445-471. (2007) Zbl1199.05241MR2355287DOI10.2298/AADM0702445R
- Dam, E. R. van, 10.1006/jctb.1998.1815, J. Comb. Theory, Ser. B 73 (1998), 101-118. (1998) Zbl0917.05044MR1631983DOI10.1006/jctb.1998.1815
- Dam, E. R. van, Haemers, W. H., 10.1016/S0024-3795(03)00483-X, Linear Algebra Appl. 373 (2003), 241-272. (2003) Zbl1026.05079MR2022290DOI10.1016/S0024-3795(03)00483-X
- Dam, E. R. van, Haemers, W. H., 10.1016/j.disc.2008.08.019, Discrete Math. 309 (2009), 576-586. (2009) Zbl1205.05156MR2499010DOI10.1016/j.disc.2008.08.019
- Wang, J., Belardo, F., Huang, Q., Borovićanin, B., 10.1016/j.disc.2010.06.030, Discrete Math. 310 (2010), 2858-2866. (2010) Zbl1208.05079MR2677645DOI10.1016/j.disc.2010.06.030
- Wang, W., Xu, C., 10.1016/j.ejc.2005.05.004, Eur. J. Comb. 27 (2006), 826-840. (2006) Zbl1092.05050MR2226420DOI10.1016/j.ejc.2005.05.004
- Wang, J., Zhao, H., Huang, Q., 10.1007/s10587-012-0021-x, Czech. Math. J. 62 (2012), 117-126. (2012) Zbl1249.05256MR2899739DOI10.1007/s10587-012-0021-x
- West, D. B., Introduction to Graph Theory, Prentice-Hall of India, New Delhi (2005). (2005) Zbl1121.05304MR1367739
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.