Spectral characterization of multicone graphs

Jianfeng Wang; Haixing Zhao; Qiongxiang Huang

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 117-126
  • ISSN: 0011-4642

Abstract

top
A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.

How to cite

top

Wang, Jianfeng, Zhao, Haixing, and Huang, Qiongxiang. "Spectral characterization of multicone graphs." Czechoslovak Mathematical Journal 62.1 (2012): 117-126. <http://eudml.org/doc/247107>.

@article{Wang2012,
abstract = {A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.},
author = {Wang, Jianfeng, Zhao, Haixing, Huang, Qiongxiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {adjacency matrix; cospectral graph; spectral characteriztion; multicone graph; adjacency matrix; cospectral graph; spectral characteriztion; multicone graph},
language = {eng},
number = {1},
pages = {117-126},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spectral characterization of multicone graphs},
url = {http://eudml.org/doc/247107},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Wang, Jianfeng
AU - Zhao, Haixing
AU - Huang, Qiongxiang
TI - Spectral characterization of multicone graphs
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 117
EP - 126
AB - A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.
LA - eng
KW - adjacency matrix; cospectral graph; spectral characteriztion; multicone graph; adjacency matrix; cospectral graph; spectral characteriztion; multicone graph
UR - http://eudml.org/doc/247107
ER -

References

top
  1. Cvetković, D ., Doob, M., Sachs, H., Spectra of Graphs. Theory and Applications. 3rd revised a. enl. ed., J. A. Barth Verlag Leipzig (1995). (1995) MR1324340
  2. Cvetković, D., Doob, M., Simić, S., 10.1002/jgt.3190050408, J. Graph Theory 5 (1981), 385-399. (1981) Zbl0475.05061MR0635701DOI10.1002/jgt.3190050408
  3. Dam, E. R. van, Haemers, W. H., Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003), 241-272. (2003) MR2022290
  4. Dam, E. R. van, Haemers, W. H., 10.1016/j.disc.2008.08.019, Discrete Math. 309 (2009), 576-586. (2009) MR2499010DOI10.1016/j.disc.2008.08.019
  5. Godsil, C. D., McKay, B. D., 10.1007/BF02189621, Aequationes Math. 25 (1982), 257-268. (1982) Zbl0527.05051MR0730486DOI10.1007/BF02189621
  6. Erdős, P., Rényi, A., Sós, V. T., On a problem of graph theory, Stud. Sci. Math. Hung. 1 (1966), 215-235. (1966) MR0223262
  7. Günthard, Hs. H., Primas, H., 10.1002/hlca.19560390623, Helv. Chim. Acta 39 (1956), 1645-1653. (1956) DOI10.1002/hlca.19560390623
  8. Haemers, W. H., Spence, E., 10.1016/S0195-6698(03)00100-8, Eur. J. Comb. 25 (2004), 199-211. (2004) Zbl1033.05070MR2070541DOI10.1016/S0195-6698(03)00100-8
  9. Harary, F., King, C., Mowshowitz, A., Read, R., 10.1112/blms/3.3.321, Bull. Lond. Math. Soc. 3 (1971), 321-328. (1971) Zbl0224.05125MR0294176DOI10.1112/blms/3.3.321
  10. Hong, Y., Shu, J.-L., Fang, K., 10.1006/jctb.2000.1997, J. Comb. Theory, Ser. B 81 (2001), 177-183. (2001) Zbl1024.05059MR1814902DOI10.1006/jctb.2000.1997
  11. Johnson, C. R., Newman, M., 10.1016/0095-8956(80)90058-1, J. Comb. Theory, Ser. B 28 (1980), 96-103. (1980) Zbl0431.05021MR0565513DOI10.1016/0095-8956(80)90058-1
  12. Nikiforov, V., 10.1017/S0963548301004928, Comb. Probab. Comput. 11 (2002), 179-189. (2002) Zbl1005.05029MR1888908DOI10.1017/S0963548301004928
  13. Zhou, B., Cho, H. H., 10.1007/s10587-005-0064-3, Czech. Math. J. 55 (130) (2005), 781-790. (2005) Zbl1081.05068MR2153101DOI10.1007/s10587-005-0064-3
  14. Wang, J. F., Belardo, F., Huang, Q. X., Borovićanin, B., 10.1016/j.disc.2010.06.030, Discrete Math. 310 (2010), 2858-2866. (2010) Zbl1208.05079MR2677645DOI10.1016/j.disc.2010.06.030
  15. Wilf, H. S., The friendship theorem, Combinatorial Mathematics and Its Applications. Proc. Conf. Math. Inst., Oxford D. J. A. Welsh Academic Press New York-Lodon (1971), 307-309. (1971) Zbl0226.05002MR0282857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.