Spectral characterization of multicone graphs

Jianfeng Wang; Haixing Zhao; Qiongxiang Huang

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 117-126
  • ISSN: 0011-4642

Abstract

top
A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.

How to cite

top

Wang, Jianfeng, Zhao, Haixing, and Huang, Qiongxiang. "Spectral characterization of multicone graphs." Czechoslovak Mathematical Journal 62.1 (2012): 117-126. <http://eudml.org/doc/247107>.

@article{Wang2012,
abstract = {A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.},
author = {Wang, Jianfeng, Zhao, Haixing, Huang, Qiongxiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {adjacency matrix; cospectral graph; spectral characteriztion; multicone graph; adjacency matrix; cospectral graph; spectral characteriztion; multicone graph},
language = {eng},
number = {1},
pages = {117-126},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spectral characterization of multicone graphs},
url = {http://eudml.org/doc/247107},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Wang, Jianfeng
AU - Zhao, Haixing
AU - Huang, Qiongxiang
TI - Spectral characterization of multicone graphs
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 117
EP - 126
AB - A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.
LA - eng
KW - adjacency matrix; cospectral graph; spectral characteriztion; multicone graph; adjacency matrix; cospectral graph; spectral characteriztion; multicone graph
UR - http://eudml.org/doc/247107
ER -

References

top
  1. Cvetković, D ., Doob, M., Sachs, H., Spectra of Graphs. Theory and Applications. 3rd revised a. enl. ed., J. A. Barth Verlag Leipzig (1995). (1995) MR1324340
  2. Cvetković, D., Doob, M., Simić, S., 10.1002/jgt.3190050408, J. Graph Theory 5 (1981), 385-399. (1981) Zbl0475.05061MR0635701DOI10.1002/jgt.3190050408
  3. Dam, E. R. van, Haemers, W. H., Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003), 241-272. (2003) MR2022290
  4. Dam, E. R. van, Haemers, W. H., 10.1016/j.disc.2008.08.019, Discrete Math. 309 (2009), 576-586. (2009) MR2499010DOI10.1016/j.disc.2008.08.019
  5. Godsil, C. D., McKay, B. D., 10.1007/BF02189621, Aequationes Math. 25 (1982), 257-268. (1982) Zbl0527.05051MR0730486DOI10.1007/BF02189621
  6. Erdős, P., Rényi, A., Sós, V. T., On a problem of graph theory, Stud. Sci. Math. Hung. 1 (1966), 215-235. (1966) MR0223262
  7. Günthard, Hs. H., Primas, H., 10.1002/hlca.19560390623, Helv. Chim. Acta 39 (1956), 1645-1653. (1956) DOI10.1002/hlca.19560390623
  8. Haemers, W. H., Spence, E., 10.1016/S0195-6698(03)00100-8, Eur. J. Comb. 25 (2004), 199-211. (2004) Zbl1033.05070MR2070541DOI10.1016/S0195-6698(03)00100-8
  9. Harary, F., King, C., Mowshowitz, A., Read, R., 10.1112/blms/3.3.321, Bull. Lond. Math. Soc. 3 (1971), 321-328. (1971) Zbl0224.05125MR0294176DOI10.1112/blms/3.3.321
  10. Hong, Y., Shu, J.-L., Fang, K., 10.1006/jctb.2000.1997, J. Comb. Theory, Ser. B 81 (2001), 177-183. (2001) Zbl1024.05059MR1814902DOI10.1006/jctb.2000.1997
  11. Johnson, C. R., Newman, M., 10.1016/0095-8956(80)90058-1, J. Comb. Theory, Ser. B 28 (1980), 96-103. (1980) Zbl0431.05021MR0565513DOI10.1016/0095-8956(80)90058-1
  12. Nikiforov, V., 10.1017/S0963548301004928, Comb. Probab. Comput. 11 (2002), 179-189. (2002) Zbl1005.05029MR1888908DOI10.1017/S0963548301004928
  13. Zhou, B., Cho, H. H., 10.1007/s10587-005-0064-3, Czech. Math. J. 55 (130) (2005), 781-790. (2005) Zbl1081.05068MR2153101DOI10.1007/s10587-005-0064-3
  14. Wang, J. F., Belardo, F., Huang, Q. X., Borovićanin, B., 10.1016/j.disc.2010.06.030, Discrete Math. 310 (2010), 2858-2866. (2010) Zbl1208.05079MR2677645DOI10.1016/j.disc.2010.06.030
  15. Wilf, H. S., The friendship theorem, Combinatorial Mathematics and Its Applications. Proc. Conf. Math. Inst., Oxford D. J. A. Welsh Academic Press New York-Lodon (1971), 307-309. (1971) Zbl0226.05002MR0282857

NotesEmbed ?

top

You must be logged in to post comments.