Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
Xinfeng Liang; Feng Wei; Ajda Fošner
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 713-761
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiang, Xinfeng, Wei, Feng, and Fošner, Ajda. "Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective." Czechoslovak Mathematical Journal 69.3 (2019): 713-761. <http://eudml.org/doc/294848>.
@article{Liang2019,
abstract = {Let $\mathcal \{R\}$ be a commutative ring, $\mathcal \{G\}$ be a generalized matrix algebra over $\mathcal \{R\}$ with weakly loyal bimodule and $\mathcal \{Z\}(\mathcal \{G\})$ be the center of $\mathcal \{G\}$. Suppose that $\mathfrak \{q\}\colon \mathcal \{G\}\times \mathcal \{G\} \rightarrow \mathcal \{G\}$ is an $\mathcal \{R\}$-bilinear mapping and that $\mathfrak \{T\}_\{\mathfrak \{q\}\}\colon \mathcal \{G\}\rightarrow \mathcal \{G\}$ is a trace of $\mathfrak \{q\}$. The aim of this article is to describe the form of $\mathfrak \{T\}_\{\mathfrak \{q\}\}$ satisfying the centralizing condition $[\mathfrak \{T\}_\{\mathfrak \{q\}\}(x), x]\in \mathcal \{Z(G)\}$ (and commuting condition $[\mathfrak \{T\}_\{\mathfrak \{q\}\}(x), x]=0$) for all $x\in \mathcal \{G\}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak \{T\}_\{\mathfrak \{q\}\}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal \{G\}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.},
author = {Liang, Xinfeng, Wei, Feng, Fošner, Ajda},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism},
language = {eng},
number = {3},
pages = {713-761},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective},
url = {http://eudml.org/doc/294848},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Liang, Xinfeng
AU - Wei, Feng
AU - Fošner, Ajda
TI - Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 713
EP - 761
AB - Let $\mathcal {R}$ be a commutative ring, $\mathcal {G}$ be a generalized matrix algebra over $\mathcal {R}$ with weakly loyal bimodule and $\mathcal {Z}(\mathcal {G})$ be the center of $\mathcal {G}$. Suppose that $\mathfrak {q}\colon \mathcal {G}\times \mathcal {G} \rightarrow \mathcal {G}$ is an $\mathcal {R}$-bilinear mapping and that $\mathfrak {T}_{\mathfrak {q}}\colon \mathcal {G}\rightarrow \mathcal {G}$ is a trace of $\mathfrak {q}$. The aim of this article is to describe the form of $\mathfrak {T}_{\mathfrak {q}}$ satisfying the centralizing condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]\in \mathcal {Z(G)}$ (and commuting condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]=0$) for all $x\in \mathcal {G}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak {T}_{\mathfrak {q}}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal {G}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.
LA - eng
KW - generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism
UR - http://eudml.org/doc/294848
ER -
References
top- Ánh, P. N., Wyk, L. van, 10.1016/j.laa.2010.10.007, Linear Algebra Appl. 434 (2011), 1018-1026. (2011) Zbl1222.16017MR2763609DOI10.1016/j.laa.2010.10.007
- Bai, Z., Du, S., Hou, J., 10.1080/00927870701870475, Commun. Algebra 36 (2008), 1626-1633. (2008) Zbl1145.16013MR2420085DOI10.1080/00927870701870475
- Benkovič, D., 10.1080/03081087.2013.851200, Linear Multilinear Algebra 63 (2015), 141-165. (2015) Zbl1315.16037MR3273744DOI10.1080/03081087.2013.851200
- Benkovič, D., Eremita, D., 10.1016/j.jalgebra.2004.06.019, J. Algebra 280 (2004), 797-824. (2004) Zbl1076.16032MR2090065DOI10.1016/j.jalgebra.2004.06.019
- Benkovič, D., Eremita, D., 10.1016/j.laa.2012.01.022, Linear Algebra Appl. 436 (2012), 4223-4240. (2012) Zbl1247.16040MR2915278DOI10.1016/j.laa.2012.01.022
- Benkovič, D., Širovnik, N., 10.1016/j.laa.2012.06.009, Linear Algebra Appl. 437 (2012), 2271-2284. (2012) Zbl1258.16042MR2954489DOI10.1016/j.laa.2012.06.009
- Boboc, C., Dăscălescu, S., Wyk, L. van, 10.1080/03081087.2011.611946, Linear Multilinear Algebra 60 (2012), 545-563. (2012) Zbl1258.16040MR2916840DOI10.1080/03081087.2011.611946
- Brešar, M., 10.1006/jabr.1993.1080, J. Algebra 156 (1993), 385-394. (1993) Zbl0773.16017MR1216475DOI10.1006/jabr.1993.1080
- Brešar, M., 10.2307/2154392, Trans. Am. Math. Soc. 335 (1993), 525-546. (1993) Zbl0791.16028MR1069746DOI10.2307/2154392
- Brešar, M., 10.11650/twjm/1500407660, Taiwanese J. Math. 8 (2004), 361-397. (2004) Zbl1078.16032MR2163313DOI10.11650/twjm/1500407660
- Brešar, M., Chebotar, M. A., III, W. S. Martindale, 10.1007/978-3-7643-7796-0, Frontiers in Mathematics, Birkhäuser, Basel (2007). (2007) Zbl1132.16001MR2332350DOI10.1007/978-3-7643-7796-0
- Martín, A. J. Calderón, 10.13001/1081-3810.1621, Electron. J. Linear Algebra 27 (2014), 317-331. (2014) Zbl1297.16043MR3194959DOI10.13001/1081-3810.1621
- Martín, A. J. Calderón, Haralampidou, M., Lie mappings on locally -convex -algebras, Proceedings of the International Conference on Topological Algebras and Their Applications, ICTAA 2008 Math. Stud. (Tartu) 4, Estonian Mathematical Society, Tartu (2008), 42-51. (2008) Zbl1216.46045MR2484660
- Martín, A. J. Calderón, González, C. Martín, 10.1081/AGB-120016762, Commun. Algebra 31 (2003), 323-333. (2003) Zbl1021.16021MR1969226DOI10.1081/AGB-120016762
- Martín, A. J. Calderón, González, C. Martín, 10.1016/S0252-9602(10)60118-X, Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 1219-1226. (2010) Zbl1240.17006MR2730548DOI10.1016/S0252-9602(10)60118-X
- Martín, A. J. Calderón, González, C. Martín, 10.4134/JKMS.2011.48.1.117, J. Korean Math. Soc. 48 (2011), 117-132. (2011) Zbl1235.17011MR2778017DOI10.4134/JKMS.2011.48.1.117
- Cheung, W.-S., Mappings on Triangular Algebras, Doctoral dissertation, University of Victoria, Canada (2000). (2000) MR2701472
- Cheung, W.-S., 10.1112/S0024610700001642, J. Lond. Math. Soc., II. Ser. 63 (2001), 117-127. (2001) Zbl1014.16035MR1802761DOI10.1112/S0024610700001642
- Ding, Y.-N., Li, J.-K., Characterizations of Lie -derivations of unital algebras with nontrivial idempotents, Available at https://arxiv.org/abs/1702.08877v1. MR3897339
- Dolinar, G., Maps on preserving Lie products, Publ. Math. 71 (2007), 467-477. (2007) Zbl1164.17015MR2361725
- Dolinar, G., 10.1080/03081080600635484, Linear Multilinear Algebra 55 (2007), 191-198. (2007) Zbl1160.17014MR2288901DOI10.1080/03081080600635484
- Du, Y., Wang, Y., 10.1016/j.laa.2011.08.024, Linear Algebra Appl. 436 (2012), 1367-1375. (2012) Zbl1238.15014MR2890924DOI10.1016/j.laa.2011.08.024
- Du, Y., Wang, Y., 10.1016/j.laa.2012.06.013, Linear Algebra Appl. 436 (2012), 1367-1375. (2012) Zbl1266.16046MR2964719DOI10.1016/j.laa.2012.06.013
- Du, Y., Wang, Y., 10.1016/j.laa.2013.02.017, Linear Algebra Appl. 438 (2013), 4483-4499. (2013) Zbl1283.16035MR3034545DOI10.1016/j.laa.2013.02.017
- Franca, W., 10.1016/j.laa.2012.02.018, Linear Algebra Appl. 437 (2012), 388-391. (2012) Zbl1247.15026MR2917454DOI10.1016/j.laa.2012.02.018
- Franca, W., 10.1016/j.laa.2012.11.013, Linear Algebra Appl. 438 (2013), 2813-2815. (2013) Zbl1261.15017MR3008537DOI10.1016/j.laa.2012.11.013
- Franca, W., 10.1080/03081087.2012.758259, Linear Multilinear Algebra 61 (2013), 1528-1535. (2013) Zbl1292.15026MR3175383DOI10.1080/03081087.2012.758259
- Franca, W., 10.7153/oam-09-17, Oper. Matrices 9 (2015), 305-310. (2015) Zbl1314.47005MR3338565DOI10.7153/oam-09-17
- Franca, W., 10.1080/00927872.2015.1053906, Commun. Algebra 44 (2016), 2621-2634. (2016) Zbl1352.16025MR3492178DOI10.1080/00927872.2015.1053906
- Franca, W., 10.1080/03081087.2016.1192576, Linear Multilinear Algebra 65 (2017), 475-495. (2017) Zbl1356.16023MR3589613DOI10.1080/03081087.2016.1192576
- Franca, W., Louza, N., 10.1080/00927872.2016.1278010, Commun. Algebra 45 (2017), 4696-4706. (2017) Zbl1388.16023MR3670342DOI10.1080/00927872.2016.1278010
- Herstein, I. N., 10.1090/S0002-9904-1961-10666-6, Bull. Am. Math. Soc. 67 (1961), 517-531. (1961) Zbl0107.02704MR0139641DOI10.1090/S0002-9904-1961-10666-6
- Hua, L.-K., A theorem on matrices over a sfield and its applications, J. Chinese Math. Soc. (N.S.) 1 (1951), 110-163. (1951) MR0071414
- Krylov, P. A., 10.1007/s10469-008-9016-y, Algebra Logika 47 (2008), 456-463 Russian translation in Algebra Logic 47 2008 258-262. (2008) Zbl1155.16302MR2484564DOI10.1007/s10469-008-9016-y
- Krylov, P. A., 10.1007/s11202-010-0009-4, Sibirsk. Mat. Zh. 51 (2010), 90-97 Russian translation in Sib. Math. J. 51 2010 72-77. (2010) Zbl1214.16004MR2654524DOI10.1007/s11202-010-0009-4
- Krylov, P. A., 10.1007/s10469-013-9238-5, Algebra Logika 52 (2013), 370-385 Russian translation in Algebra Logic 52 2013 250-261. (2013) Zbl1288.19001MR3137130DOI10.1007/s10469-013-9238-5
- Krylov, P. A., Tuganbaev, A. A., 10.1007/s10958-010-0133-5, Fundam. Prikl. Mat. 15 (2009), 145-211 Russian translation in J. Math. Sci., New York 171, 2010 248-295. (2009) Zbl1283.16025MR2745016DOI10.1007/s10958-010-0133-5
- Krylov, P., Tuganbaev, A., 10.1007/978-3-319-53907-2, Algebra and Applications 23 Springer, Cham (2017). (2017) Zbl1367.16001MR3642603DOI10.1007/978-3-319-53907-2
- Lee, P.-H., Wong, T.-L., Lin, J.-S., Wang, R.-J., 10.1006/jabr.1996.7016, J. Algebra 193 (1997), 709-723. (1997) Zbl0879.16022MR1458811DOI10.1006/jabr.1996.7016
- Li, Y., Wyk, L. van, Wei, F., 10.7153/oam-07-23, Oper. Matrices 7 (2013), 399-415. (2013) Zbl1310.15044MR3099192DOI10.7153/oam-07-23
- Li, Y., Wei, F., 10.1016/j.laa.2011.07.014, Linear Algebra Appl. 436 (2012), 1122-1153. (2012) Zbl1238.15015MR2890909DOI10.1016/j.laa.2011.07.014
- Li, Y., Wei, F., Fošner, A., 10.1007/s10998-018-0260-1, (to appear) in Period. Math. Hungar. DOI10.1007/s10998-018-0260-1
- Liang, X., Wei, F., Xiao, Z., Fošner, A., 10.1080/03081087.2014.974490, Linear Multilinear Algebra 63 (2015), 1786-1816. (2015) Zbl1326.15037MR3305010DOI10.1080/03081087.2014.974490
- Liu, C.-K., 10.1016/j.laa.2013.10.016, Linear Algebra Appl. 440 (2014), 318-324. (2014) Zbl1294.16030MR3134274DOI10.1016/j.laa.2013.10.016
- Liu, C.-K., Yang, J.-J., 10.1016/j.laa.2017.04.038, Linear Algebra Appl. 530 (2017), 127-149. (2017) Zbl1368.15015MR3672952DOI10.1016/j.laa.2017.04.038
- Lu, F., 10.1016/j.jfa.2006.07.012, J. Funct. Anal. 240 (2006), 84-104. (2006) Zbl1116.47059MR2259893DOI10.1016/j.jfa.2006.07.012
- Marcoux, L. W., Sourour, A. R., 10.1016/S0024-3795(98)10182-9, Linear Algebra Appl. 288 (1999), 89-104. (1999) Zbl0933.15029MR1670535DOI10.1016/S0024-3795(98)10182-9
- Marcoux, L. W., Sourour, A. R., 10.1006/jfan.1999.3388, J. Funct. Anal. 164 (1999), 163-180. (1999) Zbl0940.47061MR1694510DOI10.1006/jfan.1999.3388
- González, C. Martín, Repka, J., Sánchez-Ortega, J., 10.1007/s00009-016-0809-2, Mediterr. J. Math. 14 (2017), Article No. 68, 25 pages. (2017) Zbl1397.16039MR3619430DOI10.1007/s00009-016-0809-2
- Morita, K., Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. (1958) Zbl0080.25702MR0096700
- Qi, X., Hou, J., 10.7153/oam-04-22, Oper. Matrices 4 (2010), 417-429. (2010) Zbl1203.16027MR2680956DOI10.7153/oam-04-22
- Qi, X., Hou, J., 10.1016/j.laa.2013.12.038, Linear Algebra Appl. 468 (2015), 48-62. (2015) Zbl1312.16040MR3293240DOI10.1016/j.laa.2013.12.038
- Qi, X., Hou, J., Deng, J., 10.1016/j.jfa.2014.01.018, J. Funct. Anal. 266 (2014), 4266-4292. (2014) Zbl1312.47094MR3170209DOI10.1016/j.jfa.2014.01.018
- Sánchez-Ortega, J., -mappings of triangular algebras, Available at https://arxiv.org/abs/1312.4635v1.
- Sourour, A. R., Maps on triangular matrix algebras, Problems in Applied Mathematics and Computational Intelligence Math. Comput. Sci. Eng., World Sci. Eng. Soc. Press, Athens (2001), 92-96. (2001) MR2022547
- Šemrl, P., Non-linear commutativity preserving maps, Acta Sci. Math. 71 (2005), 781-819. (2005) Zbl1111.15002MR2206609
- Wang, T., Lu, F., 10.1016/j.jmaa.2012.01.044, J. Math. Anal. Appl. 391 (2012), 582-594. (2012) Zbl1251.46025MR2903155DOI10.1016/j.jmaa.2012.01.044
- Wang, Y., 10.1016/j.laa.2015.09.039, Linear Algebra Appl. 488 (2016), 45-70. (2016) Zbl1335.16029MR3419772DOI10.1016/j.laa.2015.09.039
- Wang, Y., 10.1080/03081087.2015.1063578, Linear Multilinear Algebra 64 (2016), 863-869. (2016) Zbl1354.16024MR3479386DOI10.1080/03081087.2015.1063578
- Wang, Y., Wang, Y., 10.1016/j.laa.2012.10.052, Linear Algebra Appl. 438 (2013), 2599-2616. (2013) Zbl1272.16039MR3005317DOI10.1016/j.laa.2012.10.052
- Xiao, Z., Wei, F., 10.1016/j.laa.2010.08.002, Linear Algebra Appl. 433 (2010), 2178-2197. (2010) Zbl1206.15016MR2736145DOI10.1016/j.laa.2010.08.002
- Xiao, Z., Wei, F., 10.7153/oam-08-46, Oper. Matrices 8 (2014), 821-847. (2014) Zbl1306.15024MR3257894DOI10.7153/oam-08-46
- Xiao, Z., Wei, F., Fošner, A., 10.1080/03081087.2014.932356, Linear Multilinear Algebra 63 (2015), 1309-1331. (2015) Zbl1318.15012MR3299322DOI10.1080/03081087.2014.932356
- Xu, X., Yi, X., 10.13001/1081-3810.1958, Electron. J. Linear Algebra 27 (2014), 735-741. (2014) Zbl1325.15014MR3291661DOI10.13001/1081-3810.1958
- Yu, X., Lu, F., 10.11650/twjm/1500602436, Taiwanese J. Math. 12 (2008), 793-806. (2008) Zbl1159.47020MR2417148DOI10.11650/twjm/1500602436
- Zhang, J.-H., Zhang, F.-J., 10.1016/j.laa.2008.01.031, Linear Algebra Appl. 429 (2008), 18-30. (2008) Zbl1178.47024MR2419135DOI10.1016/j.laa.2008.01.031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.