Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective

Xinfeng Liang; Feng Wei; Ajda Fošner

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 713-761
  • ISSN: 0011-4642

Abstract

top
Let be a commutative ring, 𝒢 be a generalized matrix algebra over with weakly loyal bimodule and 𝒵 ( 𝒢 ) be the center of 𝒢 . Suppose that 𝔮 : 𝒢 × 𝒢 𝒢 is an -bilinear mapping and that 𝔗 𝔮 : 𝒢 𝒢 is a trace of 𝔮 . The aim of this article is to describe the form of 𝔗 𝔮 satisfying the centralizing condition [ 𝔗 𝔮 ( x ) , x ] 𝒵 ( 𝒢 ) (and commuting condition [ 𝔗 𝔮 ( x ) , x ] = 0 ) for all x 𝒢 . More precisely, we will revisit the question of when the centralizing trace (and commuting trace) 𝔗 𝔮 has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of 𝒢 to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.

How to cite

top

Liang, Xinfeng, Wei, Feng, and Fošner, Ajda. "Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective." Czechoslovak Mathematical Journal 69.3 (2019): 713-761. <http://eudml.org/doc/294848>.

@article{Liang2019,
abstract = {Let $\mathcal \{R\}$ be a commutative ring, $\mathcal \{G\}$ be a generalized matrix algebra over $\mathcal \{R\}$ with weakly loyal bimodule and $\mathcal \{Z\}(\mathcal \{G\})$ be the center of $\mathcal \{G\}$. Suppose that $\mathfrak \{q\}\colon \mathcal \{G\}\times \mathcal \{G\} \rightarrow \mathcal \{G\}$ is an $\mathcal \{R\}$-bilinear mapping and that $\mathfrak \{T\}_\{\mathfrak \{q\}\}\colon \mathcal \{G\}\rightarrow \mathcal \{G\}$ is a trace of $\mathfrak \{q\}$. The aim of this article is to describe the form of $\mathfrak \{T\}_\{\mathfrak \{q\}\}$ satisfying the centralizing condition $[\mathfrak \{T\}_\{\mathfrak \{q\}\}(x), x]\in \mathcal \{Z(G)\}$ (and commuting condition $[\mathfrak \{T\}_\{\mathfrak \{q\}\}(x), x]=0$) for all $x\in \mathcal \{G\}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak \{T\}_\{\mathfrak \{q\}\}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal \{G\}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.},
author = {Liang, Xinfeng, Wei, Feng, Fošner, Ajda},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism},
language = {eng},
number = {3},
pages = {713-761},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective},
url = {http://eudml.org/doc/294848},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Liang, Xinfeng
AU - Wei, Feng
AU - Fošner, Ajda
TI - Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 713
EP - 761
AB - Let $\mathcal {R}$ be a commutative ring, $\mathcal {G}$ be a generalized matrix algebra over $\mathcal {R}$ with weakly loyal bimodule and $\mathcal {Z}(\mathcal {G})$ be the center of $\mathcal {G}$. Suppose that $\mathfrak {q}\colon \mathcal {G}\times \mathcal {G} \rightarrow \mathcal {G}$ is an $\mathcal {R}$-bilinear mapping and that $\mathfrak {T}_{\mathfrak {q}}\colon \mathcal {G}\rightarrow \mathcal {G}$ is a trace of $\mathfrak {q}$. The aim of this article is to describe the form of $\mathfrak {T}_{\mathfrak {q}}$ satisfying the centralizing condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]\in \mathcal {Z(G)}$ (and commuting condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]=0$) for all $x\in \mathcal {G}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak {T}_{\mathfrak {q}}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal {G}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.
LA - eng
KW - generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism
UR - http://eudml.org/doc/294848
ER -

References

top
  1. Ánh, P. N., Wyk, L. van, 10.1016/j.laa.2010.10.007, Linear Algebra Appl. 434 (2011), 1018-1026. (2011) Zbl1222.16017MR2763609DOI10.1016/j.laa.2010.10.007
  2. Bai, Z., Du, S., Hou, J., 10.1080/00927870701870475, Commun. Algebra 36 (2008), 1626-1633. (2008) Zbl1145.16013MR2420085DOI10.1080/00927870701870475
  3. Benkovič, D., 10.1080/03081087.2013.851200, Linear Multilinear Algebra 63 (2015), 141-165. (2015) Zbl1315.16037MR3273744DOI10.1080/03081087.2013.851200
  4. Benkovič, D., Eremita, D., 10.1016/j.jalgebra.2004.06.019, J. Algebra 280 (2004), 797-824. (2004) Zbl1076.16032MR2090065DOI10.1016/j.jalgebra.2004.06.019
  5. Benkovič, D., Eremita, D., 10.1016/j.laa.2012.01.022, Linear Algebra Appl. 436 (2012), 4223-4240. (2012) Zbl1247.16040MR2915278DOI10.1016/j.laa.2012.01.022
  6. Benkovič, D., Širovnik, N., 10.1016/j.laa.2012.06.009, Linear Algebra Appl. 437 (2012), 2271-2284. (2012) Zbl1258.16042MR2954489DOI10.1016/j.laa.2012.06.009
  7. Boboc, C., Dăscălescu, S., Wyk, L. van, 10.1080/03081087.2011.611946, Linear Multilinear Algebra 60 (2012), 545-563. (2012) Zbl1258.16040MR2916840DOI10.1080/03081087.2011.611946
  8. Brešar, M., 10.1006/jabr.1993.1080, J. Algebra 156 (1993), 385-394. (1993) Zbl0773.16017MR1216475DOI10.1006/jabr.1993.1080
  9. Brešar, M., 10.2307/2154392, Trans. Am. Math. Soc. 335 (1993), 525-546. (1993) Zbl0791.16028MR1069746DOI10.2307/2154392
  10. Brešar, M., 10.11650/twjm/1500407660, Taiwanese J. Math. 8 (2004), 361-397. (2004) Zbl1078.16032MR2163313DOI10.11650/twjm/1500407660
  11. Brešar, M., Chebotar, M. A., III, W. S. Martindale, 10.1007/978-3-7643-7796-0, Frontiers in Mathematics, Birkhäuser, Basel (2007). (2007) Zbl1132.16001MR2332350DOI10.1007/978-3-7643-7796-0
  12. Martín, A. J. Calderón, 10.13001/1081-3810.1621, Electron. J. Linear Algebra 27 (2014), 317-331. (2014) Zbl1297.16043MR3194959DOI10.13001/1081-3810.1621
  13. Martín, A. J. Calderón, Haralampidou, M., Lie mappings on locally m -convex H * -algebras, Proceedings of the International Conference on Topological Algebras and Their Applications, ICTAA 2008 Math. Stud. (Tartu) 4, Estonian Mathematical Society, Tartu (2008), 42-51. (2008) Zbl1216.46045MR2484660
  14. Martín, A. J. Calderón, González, C. Martín, 10.1081/AGB-120016762, Commun. Algebra 31 (2003), 323-333. (2003) Zbl1021.16021MR1969226DOI10.1081/AGB-120016762
  15. Martín, A. J. Calderón, González, C. Martín, 10.1016/S0252-9602(10)60118-X, Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 1219-1226. (2010) Zbl1240.17006MR2730548DOI10.1016/S0252-9602(10)60118-X
  16. Martín, A. J. Calderón, González, C. Martín, 10.4134/JKMS.2011.48.1.117, J. Korean Math. Soc. 48 (2011), 117-132. (2011) Zbl1235.17011MR2778017DOI10.4134/JKMS.2011.48.1.117
  17. Cheung, W.-S., Mappings on Triangular Algebras, Doctoral dissertation, University of Victoria, Canada (2000). (2000) MR2701472
  18. Cheung, W.-S., 10.1112/S0024610700001642, J. Lond. Math. Soc., II. Ser. 63 (2001), 117-127. (2001) Zbl1014.16035MR1802761DOI10.1112/S0024610700001642
  19. Ding, Y.-N., Li, J.-K., Characterizations of Lie n -derivations of unital algebras with nontrivial idempotents, Available at https://arxiv.org/abs/1702.08877v1. MR3897339
  20. Dolinar, G., Maps on M n preserving Lie products, Publ. Math. 71 (2007), 467-477. (2007) Zbl1164.17015MR2361725
  21. Dolinar, G., 10.1080/03081080600635484, Linear Multilinear Algebra 55 (2007), 191-198. (2007) Zbl1160.17014MR2288901DOI10.1080/03081080600635484
  22. Du, Y., Wang, Y., 10.1016/j.laa.2011.08.024, Linear Algebra Appl. 436 (2012), 1367-1375. (2012) Zbl1238.15014MR2890924DOI10.1016/j.laa.2011.08.024
  23. Du, Y., Wang, Y., 10.1016/j.laa.2012.06.013, Linear Algebra Appl. 436 (2012), 1367-1375. (2012) Zbl1266.16046MR2964719DOI10.1016/j.laa.2012.06.013
  24. Du, Y., Wang, Y., 10.1016/j.laa.2013.02.017, Linear Algebra Appl. 438 (2013), 4483-4499. (2013) Zbl1283.16035MR3034545DOI10.1016/j.laa.2013.02.017
  25. Franca, W., 10.1016/j.laa.2012.02.018, Linear Algebra Appl. 437 (2012), 388-391. (2012) Zbl1247.15026MR2917454DOI10.1016/j.laa.2012.02.018
  26. Franca, W., 10.1016/j.laa.2012.11.013, Linear Algebra Appl. 438 (2013), 2813-2815. (2013) Zbl1261.15017MR3008537DOI10.1016/j.laa.2012.11.013
  27. Franca, W., 10.1080/03081087.2012.758259, Linear Multilinear Algebra 61 (2013), 1528-1535. (2013) Zbl1292.15026MR3175383DOI10.1080/03081087.2012.758259
  28. Franca, W., 10.7153/oam-09-17, Oper. Matrices 9 (2015), 305-310. (2015) Zbl1314.47005MR3338565DOI10.7153/oam-09-17
  29. Franca, W., 10.1080/00927872.2015.1053906, Commun. Algebra 44 (2016), 2621-2634. (2016) Zbl1352.16025MR3492178DOI10.1080/00927872.2015.1053906
  30. Franca, W., 10.1080/03081087.2016.1192576, Linear Multilinear Algebra 65 (2017), 475-495. (2017) Zbl1356.16023MR3589613DOI10.1080/03081087.2016.1192576
  31. Franca, W., Louza, N., 10.1080/00927872.2016.1278010, Commun. Algebra 45 (2017), 4696-4706. (2017) Zbl1388.16023MR3670342DOI10.1080/00927872.2016.1278010
  32. Herstein, I. N., 10.1090/S0002-9904-1961-10666-6, Bull. Am. Math. Soc. 67 (1961), 517-531. (1961) Zbl0107.02704MR0139641DOI10.1090/S0002-9904-1961-10666-6
  33. Hua, L.-K., A theorem on matrices over a sfield and its applications, J. Chinese Math. Soc. (N.S.) 1 (1951), 110-163. (1951) MR0071414
  34. Krylov, P. A., 10.1007/s10469-008-9016-y, Algebra Logika 47 (2008), 456-463 Russian translation in Algebra Logic 47 2008 258-262. (2008) Zbl1155.16302MR2484564DOI10.1007/s10469-008-9016-y
  35. Krylov, P. A., 10.1007/s11202-010-0009-4, Sibirsk. Mat. Zh. 51 (2010), 90-97 Russian translation in Sib. Math. J. 51 2010 72-77. (2010) Zbl1214.16004MR2654524DOI10.1007/s11202-010-0009-4
  36. Krylov, P. A., 10.1007/s10469-013-9238-5, Algebra Logika 52 (2013), 370-385 Russian translation in Algebra Logic 52 2013 250-261. (2013) Zbl1288.19001MR3137130DOI10.1007/s10469-013-9238-5
  37. Krylov, P. A., Tuganbaev, A. A., 10.1007/s10958-010-0133-5, Fundam. Prikl. Mat. 15 (2009), 145-211 Russian translation in J. Math. Sci., New York 171, 2010 248-295. (2009) Zbl1283.16025MR2745016DOI10.1007/s10958-010-0133-5
  38. Krylov, P., Tuganbaev, A., 10.1007/978-3-319-53907-2, Algebra and Applications 23 Springer, Cham (2017). (2017) Zbl1367.16001MR3642603DOI10.1007/978-3-319-53907-2
  39. Lee, P.-H., Wong, T.-L., Lin, J.-S., Wang, R.-J., 10.1006/jabr.1996.7016, J. Algebra 193 (1997), 709-723. (1997) Zbl0879.16022MR1458811DOI10.1006/jabr.1996.7016
  40. Li, Y., Wyk, L. van, Wei, F., 10.7153/oam-07-23, Oper. Matrices 7 (2013), 399-415. (2013) Zbl1310.15044MR3099192DOI10.7153/oam-07-23
  41. Li, Y., Wei, F., 10.1016/j.laa.2011.07.014, Linear Algebra Appl. 436 (2012), 1122-1153. (2012) Zbl1238.15015MR2890909DOI10.1016/j.laa.2011.07.014
  42. Li, Y., Wei, F., Fošner, A., 10.1007/s10998-018-0260-1, (to appear) in Period. Math. Hungar. DOI10.1007/s10998-018-0260-1
  43. Liang, X., Wei, F., Xiao, Z., Fošner, A., 10.1080/03081087.2014.974490, Linear Multilinear Algebra 63 (2015), 1786-1816. (2015) Zbl1326.15037MR3305010DOI10.1080/03081087.2014.974490
  44. Liu, C.-K., 10.1016/j.laa.2013.10.016, Linear Algebra Appl. 440 (2014), 318-324. (2014) Zbl1294.16030MR3134274DOI10.1016/j.laa.2013.10.016
  45. Liu, C.-K., Yang, J.-J., 10.1016/j.laa.2017.04.038, Linear Algebra Appl. 530 (2017), 127-149. (2017) Zbl1368.15015MR3672952DOI10.1016/j.laa.2017.04.038
  46. Lu, F., 10.1016/j.jfa.2006.07.012, J. Funct. Anal. 240 (2006), 84-104. (2006) Zbl1116.47059MR2259893DOI10.1016/j.jfa.2006.07.012
  47. Marcoux, L. W., Sourour, A. R., 10.1016/S0024-3795(98)10182-9, Linear Algebra Appl. 288 (1999), 89-104. (1999) Zbl0933.15029MR1670535DOI10.1016/S0024-3795(98)10182-9
  48. Marcoux, L. W., Sourour, A. R., 10.1006/jfan.1999.3388, J. Funct. Anal. 164 (1999), 163-180. (1999) Zbl0940.47061MR1694510DOI10.1006/jfan.1999.3388
  49. González, C. Martín, Repka, J., Sánchez-Ortega, J., 10.1007/s00009-016-0809-2, Mediterr. J. Math. 14 (2017), Article No. 68, 25 pages. (2017) Zbl1397.16039MR3619430DOI10.1007/s00009-016-0809-2
  50. Morita, K., Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. (1958) Zbl0080.25702MR0096700
  51. Qi, X., Hou, J., 10.7153/oam-04-22, Oper. Matrices 4 (2010), 417-429. (2010) Zbl1203.16027MR2680956DOI10.7153/oam-04-22
  52. Qi, X., Hou, J., 10.1016/j.laa.2013.12.038, Linear Algebra Appl. 468 (2015), 48-62. (2015) Zbl1312.16040MR3293240DOI10.1016/j.laa.2013.12.038
  53. Qi, X., Hou, J., Deng, J., 10.1016/j.jfa.2014.01.018, J. Funct. Anal. 266 (2014), 4266-4292. (2014) Zbl1312.47094MR3170209DOI10.1016/j.jfa.2014.01.018
  54. Sánchez-Ortega, J., σ -mappings of triangular algebras, Available at https://arxiv.org/abs/1312.4635v1. 
  55. Sourour, A. R., Maps on triangular matrix algebras, Problems in Applied Mathematics and Computational Intelligence Math. Comput. Sci. Eng., World Sci. Eng. Soc. Press, Athens (2001), 92-96. (2001) MR2022547
  56. Šemrl, P., Non-linear commutativity preserving maps, Acta Sci. Math. 71 (2005), 781-819. (2005) Zbl1111.15002MR2206609
  57. Wang, T., Lu, F., 10.1016/j.jmaa.2012.01.044, J. Math. Anal. Appl. 391 (2012), 582-594. (2012) Zbl1251.46025MR2903155DOI10.1016/j.jmaa.2012.01.044
  58. Wang, Y., 10.1016/j.laa.2015.09.039, Linear Algebra Appl. 488 (2016), 45-70. (2016) Zbl1335.16029MR3419772DOI10.1016/j.laa.2015.09.039
  59. Wang, Y., 10.1080/03081087.2015.1063578, Linear Multilinear Algebra 64 (2016), 863-869. (2016) Zbl1354.16024MR3479386DOI10.1080/03081087.2015.1063578
  60. Wang, Y., Wang, Y., 10.1016/j.laa.2012.10.052, Linear Algebra Appl. 438 (2013), 2599-2616. (2013) Zbl1272.16039MR3005317DOI10.1016/j.laa.2012.10.052
  61. Xiao, Z., Wei, F., 10.1016/j.laa.2010.08.002, Linear Algebra Appl. 433 (2010), 2178-2197. (2010) Zbl1206.15016MR2736145DOI10.1016/j.laa.2010.08.002
  62. Xiao, Z., Wei, F., 10.7153/oam-08-46, Oper. Matrices 8 (2014), 821-847. (2014) Zbl1306.15024MR3257894DOI10.7153/oam-08-46
  63. Xiao, Z., Wei, F., Fošner, A., 10.1080/03081087.2014.932356, Linear Multilinear Algebra 63 (2015), 1309-1331. (2015) Zbl1318.15012MR3299322DOI10.1080/03081087.2014.932356
  64. Xu, X., Yi, X., 10.13001/1081-3810.1958, Electron. J. Linear Algebra 27 (2014), 735-741. (2014) Zbl1325.15014MR3291661DOI10.13001/1081-3810.1958
  65. Yu, X., Lu, F., 10.11650/twjm/1500602436, Taiwanese J. Math. 12 (2008), 793-806. (2008) Zbl1159.47020MR2417148DOI10.11650/twjm/1500602436
  66. Zhang, J.-H., Zhang, F.-J., 10.1016/j.laa.2008.01.031, Linear Algebra Appl. 429 (2008), 18-30. (2008) Zbl1178.47024MR2419135DOI10.1016/j.laa.2008.01.031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.