Norm continuity of pointwise quasi-continuous mappings
Mathematica Bohemica (2018)
- Volume: 143, Issue: 3, page 329-335
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMirmostafaee, Alireza Kamel. "Norm continuity of pointwise quasi-continuous mappings." Mathematica Bohemica 143.3 (2018): 329-335. <http://eudml.org/doc/294853>.
@article{Mirmostafaee2018,
abstract = {Let $X$ be a Baire space, $Y$ be a compact Hausdorff space and $\varphi \colon X \rightarrow C_p(Y )$ be a quasi-continuous mapping. For a proximal subset $H$ of $Y \times Y$ we will use topological games $\mathcal \{G\}_1(H)$ and $\mathcal \{G\}_2(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then $\varphi $ is norm continuous on a dense $G_\delta $ subset of $X$. It follows that if $Y$ is Valdivia compact, each quasi-continuous mapping from a Baire space $X$ to $C_p(Y)$ is norm continuous on a dense $G_\delta $ subset of $X$.},
author = {Mirmostafaee, Alireza Kamel},
journal = {Mathematica Bohemica},
keywords = {function space; weak continuity; generalized continuity; quasi-continuous function; pointwise topology},
language = {eng},
number = {3},
pages = {329-335},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Norm continuity of pointwise quasi-continuous mappings},
url = {http://eudml.org/doc/294853},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Mirmostafaee, Alireza Kamel
TI - Norm continuity of pointwise quasi-continuous mappings
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 3
SP - 329
EP - 335
AB - Let $X$ be a Baire space, $Y$ be a compact Hausdorff space and $\varphi \colon X \rightarrow C_p(Y )$ be a quasi-continuous mapping. For a proximal subset $H$ of $Y \times Y$ we will use topological games $\mathcal {G}_1(H)$ and $\mathcal {G}_2(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then $\varphi $ is norm continuous on a dense $G_\delta $ subset of $X$. It follows that if $Y$ is Valdivia compact, each quasi-continuous mapping from a Baire space $X$ to $C_p(Y)$ is norm continuous on a dense $G_\delta $ subset of $X$.
LA - eng
KW - function space; weak continuity; generalized continuity; quasi-continuous function; pointwise topology
UR - http://eudml.org/doc/294853
ER -
References
top- Angosto, C., Cascales, B., Namioka, I., 10.1007/s00209-008-0412-8, Math. Z. 263 (2009), 103-124. (2009) Zbl1173.54007MR2529490DOI10.1007/s00209-008-0412-8
- Bouziad, A., L'espace de Helly a la propriété de Namioka, C. R. Acad. Sci., Paris, Sér. I 317 (1993), 841-843 French. (1993) Zbl0798.54039MR1246650
- Bouziad, A., 10.1090/S0002-9939-96-03384-9, Proc. Am. Math. Soc. 124 (1996), 953-959. (1996) Zbl0857.22001MR1328341DOI10.1090/S0002-9939-96-03384-9
- Choquet, G., Lectures on Analysis. Vol. 1: Integration and Topological Vector Spaces, Mathematics Lecture Note Series. W. A. Benjamin Inc., New-York (1969). (1969) Zbl0181.39601MR0250011
- Christensen, J. P. R., 10.2307/2043960, Proc. Am. Math. Soc. 82 (1981), 455-461. (1981) Zbl0472.54007MR0612739DOI10.2307/2043960
- Debs, G., 10.1016/0166-8641(85)90047-1, Topology Appl. 23 (1986), 299-303. (1986) Zbl0613.54007MR0858338DOI10.1016/0166-8641(85)90047-1
- Deville, R., Point convergence and uniform convergence on a compact space, Bull. Pol. Acad. Sci., Math. 37 (1989), 507-515 French. (1989) Zbl0759.54002MR1101913
- Deville, R., Godefroy, G., 10.1112/plms/s3-67.1.183, Proc. Lond. Math. Soc., III. Ser. 67 (1993), 183-199. (1993) Zbl0798.46008MR1218125DOI10.1112/plms/s3-67.1.183
- Hansel, G., Troallic, J.-P., 10.1016/0166-8641(92)90129-N, Topology Appl. 46 (1992), 135-149. (1992) Zbl0812.54019MR1184113DOI10.1016/0166-8641(92)90129-N
- Haydon, R., 10.1112/S0025579300011323, Mathematika 42 (1995), 30-42. (1995) Zbl0870.46008MR1346669DOI10.1112/S0025579300011323
- Kenderov, P. S., Kortezov, I. S., Moors, W. B., 10.1016/j.topol.2005.11.007, Topology Appl. 153 (2006), 2745-2759. (2006) Zbl1100.54014MR2243747DOI10.1016/j.topol.2005.11.007
- Mirmostafaee, A. K., 10.1016/j.topol.2009.10.010, Topology Appl. 157 (2010), 530-535. (2010) Zbl1190.54010MR2577486DOI10.1016/j.topol.2009.10.010
- Mirmostafaee, A. K., 10.14321/realanalexch.39.2.0335, Real Anal. Exch. 39 (2013-2014), 335-344. (2013) Zbl1322.54009MR3365378DOI10.14321/realanalexch.39.2.0335
- Mirmostafaee, A. K., 10.2478/s12175-014-0255-1, Math. Slovaca 64 (2014), 1019-1026. (2014) Zbl1349.54034MR3255869DOI10.2478/s12175-014-0255-1
- Namioka, I., 10.2140/pjm.1974.51.515, Pac. J. Math. 51 (1974), 515-531. (1974) Zbl0294.54010MR0370466DOI10.2140/pjm.1974.51.515
- Oxtoby, J. C., 10.1007/978-1-4615-9964-7, Graduate Texts in Mathematics 2. Springer, New York (1971). (1971) Zbl0217.09201MR0393403DOI10.1007/978-1-4615-9964-7
- Talagrand, M., 10.1007/BF01456180, Math. Ann. 270 (1985), 159-164 French. (1985) Zbl0582.54008MR0771977DOI10.1007/BF01456180
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.