CF-modules over commutative rings

Ahmed Najim; Mohammed Elhassani Charkani

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 1, page 25-34
  • ISSN: 0010-2628

Abstract

top
Let R be a commutative ring with unit. We give some criterions for determining when a direct sum of two CF-modules over R is a CF-module. When R is local, we characterize the CF-modules over R whose tensor product is a CF-module.

How to cite

top

Najim, Ahmed, and Charkani, Mohammed Elhassani. "CF-modules over commutative rings." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 25-34. <http://eudml.org/doc/294863>.

@article{Najim2018,
abstract = {Let $R$ be a commutative ring with unit. We give some criterions for determining when a direct sum of two CF-modules over $R$ is a CF-module. When $R$ is local, we characterize the CF-modules over $R$ whose tensor product is a CF-module.},
author = {Najim, Ahmed, Charkani, Mohammed Elhassani},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {CF-couple; CF-module; commutative ring; local ring},
language = {eng},
number = {1},
pages = {25-34},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {CF-modules over commutative rings},
url = {http://eudml.org/doc/294863},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Najim, Ahmed
AU - Charkani, Mohammed Elhassani
TI - CF-modules over commutative rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 25
EP - 34
AB - Let $R$ be a commutative ring with unit. We give some criterions for determining when a direct sum of two CF-modules over $R$ is a CF-module. When $R$ is local, we characterize the CF-modules over $R$ whose tensor product is a CF-module.
LA - eng
KW - CF-couple; CF-module; commutative ring; local ring
UR - http://eudml.org/doc/294863
ER -

References

top
  1. Auslander M., Buchsbaum D. A., 10.1090/S0002-9947-1962-0157987-5, Trans. Amer. Math. Soc. 104 (1962), 516–522. DOI10.1090/S0002-9947-1962-0157987-5
  2. Behboodi M., Ghorbani A., Moradzadeh-Dehkordi A., 10.1016/j.jalgebra.2011.08.017, J. Algebra 345 (2011), 257–265. DOI10.1016/j.jalgebra.2011.08.017
  3. Brown William C., Matrices over Commutative Rings, Marcel Decker Inc., New York, 1993. 
  4. Charkani M. E., Akharraz I., Fitting ideals and cyclic decomposition of finitely generated modules, Arab. J. Sci. Eng. Sect. C (2000), 151–156. 
  5. Cohen I. S., Kaplansky I., 10.1007/BF01179851, Math. Z. 54 (1951), 97–101. DOI10.1007/BF01179851
  6. Griffith P., 10.1007/BF01350858, Math. Ann. 184 (1970), 300–308. DOI10.1007/BF01350858
  7. Klingler L., Levy L. S., 10.2140/pjm.2001.200.345, Pacific J. Math. 200 (2001), no. 2, 345–386. DOI10.2140/pjm.2001.200.345
  8. Köthe G., 10.1007/BF01201343, Math. Z. 39 (1935), 31–44. DOI10.1007/BF01201343
  9. Levy L. S., 10.1016/0021-8693(85)90176-0, J. Algebra 93 (1985), 1–116. DOI10.1016/0021-8693(85)90176-0
  10. Shores T. S., Wiegand R., 10.1090/S0002-9904-1973-13414-7, Bull. Amer. Math. Soc. 79 (1973), 1277–1280. DOI10.1090/S0002-9904-1973-13414-7
  11. Shores T. S., Wiegand R., 10.1016/0021-8693(74)90178-1, J. Algebra 32 (1974), 152–172. DOI10.1016/0021-8693(74)90178-1
  12. Steinitz E., 10.1007/BF01456849, Math. Ann. 71 (1911), 328–354 (German). DOI10.1007/BF01456849
  13. Steinitz E., 10.1007/BF01456721, Math. Ann. 72 (1912), 297–345 (German). DOI10.1007/BF01456721
  14. Warfield R. B. Jr., 10.1090/S0002-9939-1969-0242886-2, Proc. Amer. Math. Soc. 22 (1969), 460–465. DOI10.1090/S0002-9939-1969-0242886-2
  15. Warfield R. B. Jr., 10.1007/BF01110928, Math. Z. 125 (1972), 187–192. DOI10.1007/BF01110928
  16. Weintraub S. H., 10.1090/gsm/059, Graduate Studies in Mathematics, 59, American Mathematical Society, Providence, RI, 2003. DOI10.1090/gsm/059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.