Cross-Diffusion Systems with Entropy Structure

Jüngel, Ansgar

  • Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 181-190

Abstract

top
Some results on cross-diffusion systems with entropy structure are reviewed. The focus is on local-in-time existence results for general systems with normally elliptic diffusion operators, due to Amann, and global-in-time existence theorems by Lepoutre, Moussa, and co-workers for cross-diffusion systems with an additional Laplace structure. The boundedness-by-entropy method allows for global bounded weak solutions to certain diffusion systems. Furthermore, a partial result on the uniqueness of weak solutions is recalled, and some open problems are presented.

How to cite

top

Jüngel, Ansgar. "Cross-Diffusion Systems with Entropy Structure." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 181-190. <http://eudml.org/doc/294882>.

@inProceedings{Jüngel2017,
abstract = {Some results on cross-diffusion systems with entropy structure are reviewed. The focus is on local-in-time existence results for general systems with normally elliptic diffusion operators, due to Amann, and global-in-time existence theorems by Lepoutre, Moussa, and co-workers for cross-diffusion systems with an additional Laplace structure. The boundedness-by-entropy method allows for global bounded weak solutions to certain diffusion systems. Furthermore, a partial result on the uniqueness of weak solutions is recalled, and some open problems are presented.},
author = {Jüngel, Ansgar},
booktitle = {Proceedings of Equadiff 14},
keywords = {Strongly coupled parabolic systems, local existence of solutions, global existence of solutions, gradient flow, duality method, boundedness-by-entropy method, nonlinear Aubin-Lions lemma, Kullback-Leibler entropy},
location = {Bratislava},
pages = {181-190},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Cross-Diffusion Systems with Entropy Structure},
url = {http://eudml.org/doc/294882},
year = {2017},
}

TY - CLSWK
AU - Jüngel, Ansgar
TI - Cross-Diffusion Systems with Entropy Structure
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 181
EP - 190
AB - Some results on cross-diffusion systems with entropy structure are reviewed. The focus is on local-in-time existence results for general systems with normally elliptic diffusion operators, due to Amann, and global-in-time existence theorems by Lepoutre, Moussa, and co-workers for cross-diffusion systems with an additional Laplace structure. The boundedness-by-entropy method allows for global bounded weak solutions to certain diffusion systems. Furthermore, a partial result on the uniqueness of weak solutions is recalled, and some open problems are presented.
KW - Strongly coupled parabolic systems, local existence of solutions, global existence of solutions, gradient flow, duality method, boundedness-by-entropy method, nonlinear Aubin-Lions lemma, Kullback-Leibler entropy
UR - http://eudml.org/doc/294882
ER -

References

top
  1. Alt, H.-W., Luckhaus., S., Quasilinear elliptic-parabolic differential equations, . Math. Z. 183(1983), 311-341. MR0706391
  2. Amann., H., Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, . Diff. Int. Eqs. 3 (1990), 13-75. MR1014726
  3. Amann., H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, . In: H.J. Schmeisser and H. Triebel (editors), Function Spaces, Differential Operators and Nonlinear Analysis, pp. 9-126. Teubner, Stuttgart, 1993. MR1242579
  4. Bothe., D., On the Maxwell-Stefan equations to multicomponent diffusion, . In: Progress in Nonlinear Differential Equations and their Applications, pp. 81-93. Springer, Basel, 2011. MR3052573
  5. Burger, M., Francesco, M. Di, Pietschmann, J.-F., HASH(0x1502c88), Schlake., B., Nonlinear cross-diffusion with size exclusion, . SIAM J. Math. Anal. 42 (2010), 2842-2871. MR2745794
  6. Carrillo, J. A., Jüngel, A., Markowich, P., Toscani, G., HASH(0x15056a0), Unterreiter., A., Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, . Monatsh. Math. 133 (2001), 1-82. MR1853037
  7. Chen, L., Jüngel., A., Analysis of a parabolic cross-diffusion population model without selfdiffusion, . J. Diff. Eqs. 224 (2006), 39-59. MR2220063
  8. Chen, X., Daus, E., HASH(0x1507b50), Jüngel., A., Global existence analysis of cross-diffusion population systems for multiple species, . To appear in Arch. Ration. Mech. Anal., 2017. arXiv:1608.03696. MR3740386
  9. Chen, X., Jüngel., A., A note on the uniqueness of weak solutions to a class of cross-diffusion systems, . Submitted for publication, 2017. arXiv:1706.08812. MR3820423
  10. Chen, X., Jüngel., A., Global renormalized solutions to reaction-cross-diffusion systems, . Work in progress, 2017. MR3996789
  11. Chen, X., Jüngel, A., HASH(0x150e390), Liu., J.-G., A note on Aubin-Lions-Dubinskiı̆ lemmas, . Acta Appl. Math. 133 (2014), 33-43. MR3255076
  12. Desvillettes, L., Lepoutre, T., HASH(0x150edb0), Moussa., A., Entropy, duality, and cross diffusion, . SIAM J. Math. Anal. 46 (2014), 820-853. MR3165911
  13. Desvillettes, L., Lepoutre, T., Moussa, A., HASH(0x1511518), Trescases., A., On the entropic structure of reactioncross diffusion systems, . Commun. Partial Diff. Eqs. 40 (2015), 1705-1747. MR3359162
  14. Dı́az, J. I., Galiano, G., HASH(0x1512ff0), Jüngel., A., On a quasilinear degenerate system arising in semiconductor theory. Part I: existence and uniqueness of solutions, . Nonlin. Anal. RWA 2 (2001), 305-336. MR1835610
  15. Dreher, M., Jüngel., A., Compact families of piecewise constant functions in L p ( 0 , T ; B ) , . Nonlin. Anal. 75 (2012), 3072-3077. MR2890969
  16. Fellner, K., Prager, W., Tang., B. Q., The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks, . Kinetic Related Models 10 (2017), 1055-1087. MR3622100
  17. Fischer., J., Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems, . Arch. Ration. Mech. Anal. 218 (2015), 553-587. MR3360745
  18. Fischer., J., Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, . Submitted for publication, 2017. arXiv:1703.00730. MR3659829
  19. Gajewski., H., On a variant of monotonicity and its application to differential equations, . Nonlin. Anal. TMA 22 (1994), 73-80. MR1256171
  20. Gerstenmayer, A., Jüngel., A., Analysis of a degenerate parabolic cross-diffusion system for ion transport, . Submitted for publication, 2017. arXiv:1706.07261. MR3759555
  21. Herberg, M., Meyries, M., Prüss, J., HASH(0x151c4d8), Wilke., M., Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, . Nonlin. Anal. 159 (2017), 264-284. MR3659831
  22. Hittmeir, S., Jüngel., A., Cross diffusion preventing blow up in the two-dimensional Keller–Segel model, . SIAM J. Math. Anal. 43 (2011), 997-1022. MR2801186
  23. Hoang, L., Nguyen, T., Phan., T. V., Gradient estimates and global existence of smooth solutions to a cross-diffusion system, . SIAM J. Math. Anal. 47 (2015), 2122-2177. MR3352604
  24. Jüngel., A., The boundedness-by-entropy method for cross-diffusion systems, . Nonlinearity 28(2015), 1963-2001. MR3350617
  25. Jüngel., A., Entropy Methods for Diffusive Partial Differential Equations, . BCAM Springer Briefs,2016. MR3497125
  26. Jüngel, A., Stelzer., I., Entropy structure of a cross-diffusion tumor-growth model, . Math. Models Meth. Appl. Sci. 22 (2012), 1250009, 26 pages. MR2924784
  27. Jüngel, A., Zamponi., N., Qualitative behavior of solutions to cross-diffusion systems from population dynamics, . J. Math. Anal. Appl. 440 (2016), 794-809. MR3484995
  28. Kullback, S., Leibler., R., On information and sufficiency, . Ann. Math. Statist. 22 (1951), 79-86. MR0039968
  29. Le., D., Global existence for a class of strongly coupled parabolic systems, . Ann. Matem. 185 (2006), 133-154. MR2179585
  30. Lepoutre, T., Moussa., A., Entropic structure and duality for multiple species cross-diffusion systems, . Nonlin. Anal. 159 (2017), 298-315. MR3659833
  31. Moussa., A., Some variants of the classical Aubin-Lions lemma, . J. Evol. Eqs. 16 (2016), 65-93. MR3466213
  32. Otto., F., L 1 -contraction and uniqueness for quasilinear elliptic-parabolic equations, . J. Diff. Eqs. 131 (1996), 20-38. MR1415045
  33. Pham, D., Temam., R., A result of uniqueness of solutions of the Shigesada-Kawasaki-Teramoto equations, . Adv. Nonlin. Anal., online first, 2017. arXiv:1703.10544. MR3918387
  34. Pierre., M., Global existence in reaction-diffusion systems with control of mass: a survey, . Milan J. Math. 78 (2010), 417-455. MR2781847
  35. Pierre, M., Schmitt., D., Blow up in reaction-diffusion systems with dissipation of mass, . SIAM J. Math. Anal. 28 (1997), 259-269. MR1434034
  36. Shigesada, N., Kawasaki, K., HASH(0x1532dc8), Teramoto., E., Spatial segregation of interacting species, . J. Theor. Biol. 79 (1979), 83-99. MR0540951
  37. Stará, J., John., O., Some (new) counterexamples of parabolic systems, . Comment. Math. Univ. Carolin. 36 (1995), 503-510. MR1364491
  38. Wesselingh, J., Krishna., R., Mass Transfer in Multicomponent Mixtures, . Delft University Press, Delft, 2000. 
  39. Zamponi, N., Jüngel., A., Analysis of degenerate cross-diffusion population models with volume filling, . Ann. Inst. H. Poincaré Anal. Non Lin. 34 (2017), 1-29. MR3592676

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.