Numerical homogenization for indefinite H(curl)-problems

Verfürth, Barbara

  • Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 137-146

Abstract

top
In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization for H(curl)-problems, arXiv:1706.02966, 2017] to the case of indefinite problems. In particular, this requires a careful analysis of the well-posedness of the corrector problems as well as the numerical homogenization scheme.

How to cite

top

Verfürth, Barbara. "Numerical homogenization for indefinite H(curl)-problems." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 137-146. <http://eudml.org/doc/294915>.

@inProceedings{Verfürth2017,
abstract = {In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization for H(curl)-problems, arXiv:1706.02966, 2017] to the case of indefinite problems. In particular, this requires a careful analysis of the well-posedness of the corrector problems as well as the numerical homogenization scheme.},
author = {Verfürth, Barbara},
booktitle = {Proceedings of Equadiff 14},
keywords = {Multiscale method, wave propagation, Maxwell’s equations, finite element method},
location = {Bratislava},
pages = {137-146},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Numerical homogenization for indefinite H(curl)-problems},
url = {http://eudml.org/doc/294915},
year = {2017},
}

TY - CLSWK
AU - Verfürth, Barbara
TI - Numerical homogenization for indefinite H(curl)-problems
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 137
EP - 146
AB - In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization for H(curl)-problems, arXiv:1706.02966, 2017] to the case of indefinite problems. In particular, this requires a careful analysis of the well-posedness of the corrector problems as well as the numerical homogenization scheme.
KW - Multiscale method, wave propagation, Maxwell’s equations, finite element method
UR - http://eudml.org/doc/294915
ER -

References

top
  1. Abdulle, A., Henning, P., Localized orthogonal decomposition method for the wave equation with a continuum of scales, , Math. Comp., 86 (2017), pp. 549–587. MR3584540
  2. Babuška, I. M., Sauter, S. A., Is the pollution effect avoidable for the Helmholtz equation considering high wave numbers?, , SIAM Rev., 42 (2000), pp. 451–484. MR1786934
  3. Jr., P. Ciarlet, Fliss, S., HASH(0x2ad2750), Stohrer, C., On the approximation of electromagnetic fields by edge finite elements, . Part 2: A heterogeneous multiscale method for Maxwell’s equations, Comput. Math. Appl., 73 (2017), pp. 1900–1919. MR3634959
  4. Falk, R. S., Winther, R., Local bounded cochain projections, , Math. Comp., 83 (2014), pp. 2631–2656. MR3246803
  5. Gallistl, D., Henning, P., HASH(0x2ad4f60), Verfürth, B., Numerical homogenization of H(curl)-problems, , arXiv:1706.02966 (2017), preprint. MR3810505
  6. Gallistl, D., Peterseim, D., Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering, , Comp. Appl. Mech. Eng., 295 (2015), pp. 1–17. MR3388822
  7. Hellman, F., P.Henning, HASH(0x2ad7fe0), Målqvist, A., Multiscale mixed finite elements, , Discr. Contin. Dyn. Syst. Ser. S, 9 (2016), pp. 1269–1298. MR3591945
  8. Henning, P., Målqvist, A., Localized orthogonal decomposition techniques for boundary value problems, , SIAM J. Sci. Comput., 36 (2014), pp. A1609–A1634. MR3240855
  9. Henning, P., Ohlberger, M., HASH(0x2adb738), Verfürth, B., A new Heterogeneous Multiscale Method for time-harmonic Maxwell’s equations, , SIAM J. Numer. Anal., 54 (2016), pp. 3493–3522. MR3578028
  10. Henning, P., Ohlberger, M., HASH(0x2adc158), Verfürth, B., Analysis of multiscale methods for time harmonic Maxwell’s equations, , Pro. Appl. Math. Mech., 16 (2016), pp. 559–560. MR3578028
  11. Hiptmair, R., Maxwell equations: continuous and discrete, , in Computational Electromagnetism, A. Bermúdez de Castro and A. Valli, eds., Lecture Notes in Mathematics, Springer, Cham, 2015, pp. 1–58. MR3382059
  12. Målqvist, A., Peterseim, D., Localization of elliptic multiscale problems, , Math. Comp., 83 (2014), pp. 2583–2603. MR3246801
  13. Moiola, A., Trefftz-Discontinuous Galerkin methods for time-harmonic wave problems, , PhD thesis, ETH Zürich, 2011. 
  14. Monk, P., Finite element methods for Maxwell’s equation, , Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR2059447
  15. Ohlberger, M., Verfürth, B., Localized Orthogonal Decomposition for two-scale Helmholtz-type problems, , AIMS Mathematics, 2 (2017), pp. 458–478. 
  16. Peterseim, D., Eliminating the pollution effect by local subscale correction, , Math. Comp., 86(2017), pp. 1005–1036. MR3614010
  17. Wellander, N., Kristensson, G., Homogenization of the Maxwell equations at fixed frequency, , AIAM J. Appl. Math., 64 (2003), pp. 170–195. MR2029130

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.