Numerical homogenization for indefinite H(curl)-problems
- Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 137-146
Access Full Article
topAbstract
topHow to cite
topVerfürth, Barbara. "Numerical homogenization for indefinite H(curl)-problems." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 137-146. <http://eudml.org/doc/294915>.
@inProceedings{Verfürth2017,
abstract = {In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization for H(curl)-problems, arXiv:1706.02966, 2017] to the case of indefinite problems. In particular, this requires a careful analysis of the well-posedness of the corrector problems as well as the numerical homogenization scheme.},
author = {Verfürth, Barbara},
booktitle = {Proceedings of Equadiff 14},
keywords = {Multiscale method, wave propagation, Maxwell’s equations, finite element method},
location = {Bratislava},
pages = {137-146},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Numerical homogenization for indefinite H(curl)-problems},
url = {http://eudml.org/doc/294915},
year = {2017},
}
TY - CLSWK
AU - Verfürth, Barbara
TI - Numerical homogenization for indefinite H(curl)-problems
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 137
EP - 146
AB - In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization for H(curl)-problems, arXiv:1706.02966, 2017] to the case of indefinite problems. In particular, this requires a careful analysis of the well-posedness of the corrector problems as well as the numerical homogenization scheme.
KW - Multiscale method, wave propagation, Maxwell’s equations, finite element method
UR - http://eudml.org/doc/294915
ER -
References
top- Abdulle, A., Henning, P., Localized orthogonal decomposition method for the wave equation with a continuum of scales, , Math. Comp., 86 (2017), pp. 549–587. MR3584540
- Babuška, I. M., Sauter, S. A., Is the pollution effect avoidable for the Helmholtz equation considering high wave numbers?, , SIAM Rev., 42 (2000), pp. 451–484. MR1786934
- Jr., P. Ciarlet, Fliss, S., HASH(0x2ad2750), Stohrer, C., On the approximation of electromagnetic fields by edge finite elements, . Part 2: A heterogeneous multiscale method for Maxwell’s equations, Comput. Math. Appl., 73 (2017), pp. 1900–1919. MR3634959
- Falk, R. S., Winther, R., Local bounded cochain projections, , Math. Comp., 83 (2014), pp. 2631–2656. MR3246803
- Gallistl, D., Henning, P., HASH(0x2ad4f60), Verfürth, B., Numerical homogenization of H(curl)-problems, , arXiv:1706.02966 (2017), preprint. MR3810505
- Gallistl, D., Peterseim, D., Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering, , Comp. Appl. Mech. Eng., 295 (2015), pp. 1–17. MR3388822
- Hellman, F., P.Henning, HASH(0x2ad7fe0), Målqvist, A., Multiscale mixed finite elements, , Discr. Contin. Dyn. Syst. Ser. S, 9 (2016), pp. 1269–1298. MR3591945
- Henning, P., Målqvist, A., Localized orthogonal decomposition techniques for boundary value problems, , SIAM J. Sci. Comput., 36 (2014), pp. A1609–A1634. MR3240855
- Henning, P., Ohlberger, M., HASH(0x2adb738), Verfürth, B., A new Heterogeneous Multiscale Method for time-harmonic Maxwell’s equations, , SIAM J. Numer. Anal., 54 (2016), pp. 3493–3522. MR3578028
- Henning, P., Ohlberger, M., HASH(0x2adc158), Verfürth, B., Analysis of multiscale methods for time harmonic Maxwell’s equations, , Pro. Appl. Math. Mech., 16 (2016), pp. 559–560. MR3578028
- Hiptmair, R., Maxwell equations: continuous and discrete, , in Computational Electromagnetism, A. Bermúdez de Castro and A. Valli, eds., Lecture Notes in Mathematics, Springer, Cham, 2015, pp. 1–58. MR3382059
- Målqvist, A., Peterseim, D., Localization of elliptic multiscale problems, , Math. Comp., 83 (2014), pp. 2583–2603. MR3246801
- Moiola, A., Trefftz-Discontinuous Galerkin methods for time-harmonic wave problems, , PhD thesis, ETH Zürich, 2011.
- Monk, P., Finite element methods for Maxwell’s equation, , Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR2059447
- Ohlberger, M., Verfürth, B., Localized Orthogonal Decomposition for two-scale Helmholtz-type problems, , AIMS Mathematics, 2 (2017), pp. 458–478.
- Peterseim, D., Eliminating the pollution effect by local subscale correction, , Math. Comp., 86(2017), pp. 1005–1036. MR3614010
- Wellander, N., Kristensson, G., Homogenization of the Maxwell equations at fixed frequency, , AIAM J. Appl. Math., 64 (2003), pp. 170–195. MR2029130
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.