Upper Hausdorff dimension estimates for invariant sets of evolutionary systems on Hilbert manifolds

Kruck, Amina; Reitmann, Volker

  • Proceedings of Equadiff 14, Publisher: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing(Bratislava), page 247-254

Abstract

top
We prove a generalization of the Douady-Oesterlé theorem on the upper bound of the Hausdorff dimension of an invariant set of a smooth map on an infinite dimensional manifold. It is assumed that the linearization of this map is a noncompact linear operator. A similar estimate is given for the Hausdorff dimension of an invariant set of a dynamical system generated by a differential equation on a Hilbert manifold.

How to cite

top

Kruck, Amina, and Reitmann, Volker. "Upper Hausdorff dimension estimates for invariant sets of evolutionary systems on Hilbert manifolds." Proceedings of Equadiff 14. Bratislava: Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing, 2017. 247-254. <http://eudml.org/doc/294919>.

@inProceedings{Kruck2017,
abstract = {We prove a generalization of the Douady-Oesterlé theorem on the upper bound of the Hausdorff dimension of an invariant set of a smooth map on an infinite dimensional manifold. It is assumed that the linearization of this map is a noncompact linear operator. A similar estimate is given for the Hausdorff dimension of an invariant set of a dynamical system generated by a differential equation on a Hilbert manifold.},
author = {Kruck, Amina, Reitmann, Volker},
booktitle = {Proceedings of Equadiff 14},
keywords = {Hilbert manifold, Hausdorff dimension, singular value},
location = {Bratislava},
pages = {247-254},
publisher = {Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing},
title = {Upper Hausdorff dimension estimates for invariant sets of evolutionary systems on Hilbert manifolds},
url = {http://eudml.org/doc/294919},
year = {2017},
}

TY - CLSWK
AU - Kruck, Amina
AU - Reitmann, Volker
TI - Upper Hausdorff dimension estimates for invariant sets of evolutionary systems on Hilbert manifolds
T2 - Proceedings of Equadiff 14
PY - 2017
CY - Bratislava
PB - Slovak University of Technology in Bratislava, SPEKTRUM STU Publishing
SP - 247
EP - 254
AB - We prove a generalization of the Douady-Oesterlé theorem on the upper bound of the Hausdorff dimension of an invariant set of a smooth map on an infinite dimensional manifold. It is assumed that the linearization of this map is a noncompact linear operator. A similar estimate is given for the Hausdorff dimension of an invariant set of a dynamical system generated by a differential equation on a Hilbert manifold.
KW - Hilbert manifold, Hausdorff dimension, singular value
UR - http://eudml.org/doc/294919
ER -

References

top
  1. Boichenko, V. A., Leonov, G. A., Reitmann, V., Dimension Theory for Ordinary Differential Equations, . Wiesbaden:Vieweg-Teubner Verlag, 2005. MR2381409
  2. Chueshov, I. D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, . ACTA. Kharkov, 1999 (in Russian). English translation: Acta, Kharkov (2002) (see http://www.emis.de/monographs/Chueshov). MR1632228
  3. Doering, C. R., Gibbon, J. D., Holm, D. D., Nicolaenko, B., Exact Lyapunov Dimension of the Universal Attractor for the Complex Ginzburg-Landau Equation, . Phys. Rev. Lett. 59, Iss. 26-28 (1987), pp. 2911–2914. 
  4. Douady, A., Oesterle, J., Dimension de Hausdorff des attracteurs, . Comptes Rendus del’Academie des Sciences Paris Serie A. 290 (1980), pp. 1135-1138. MR0585918
  5. Ghidaglia, M., Temam, R., Attractors for damped nonlinear hyperbolic equations, . J. Math. Pures Appl., 66 (1987), pp. 273–319. MR0913856
  6. Henon, M. A., A two-dimensional mapping with a strange attractor, . Commun. Math. Phys. 50 (1976), 2. pp. 69–77. MR0422932
  7. Kruck, A. V., Malykh, A. E., Reitmann, V., Upper Hausdorff dimension estimates and stratification for invariant sets of evolutionary systems on Hilbert manifolds, . Differential Equations, 2017 (to appear). MR3804278
  8. Lang, S., Differential and Riemannian Manifolds, . Springer, New York, 1995. MR1335233
  9. Leonov, G. A., Reitmann, V., Smirnova, V. B., Non-local Methods for Pendulum-like Feedback Systems, . Teubner-Texte zur Mathematik, Bd. 132, B.G. Teubner Stuttgart-Leipzig, 1992. MR1216519
  10. Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, . New York-Berlin: Springer-Verlag, 1988. MR0953967

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.