New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative

Yacine Arioua; Maria Titraoui

Communications in Mathematics (2019)

  • Volume: 27, Issue: 2, page 113-141
  • ISSN: 1804-1388

Abstract

top
In this paper, we introduce a new class of boundary value problem for nonlinear fractional differential equations involving the Erdélyi-Kober differential operator on an infinite interval. Existence and uniqueness results for a positive solution of the given problem are obtained by using the Banach contraction principle, the Leray-Schauder nonlinear alternative, and Guo-Krasnosel'skii fixed point theorem in a special Banach space. To that end, some examples are presented to illustrate the usefulness of our main results.

How to cite

top

Arioua, Yacine, and Titraoui, Maria. "New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative." Communications in Mathematics 27.2 (2019): 113-141. <http://eudml.org/doc/295026>.

@article{Arioua2019,
abstract = {In this paper, we introduce a new class of boundary value problem for nonlinear fractional differential equations involving the Erdélyi-Kober differential operator on an infinite interval. Existence and uniqueness results for a positive solution of the given problem are obtained by using the Banach contraction principle, the Leray-Schauder nonlinear alternative, and Guo-Krasnosel'skii fixed point theorem in a special Banach space. To that end, some examples are presented to illustrate the usefulness of our main results.},
author = {Arioua, Yacine, Titraoui, Maria},
journal = {Communications in Mathematics},
keywords = {Fractional differential equations; Boundary value problems; Erdélyi-Kober derivative; Fixed point theorems; Existence; Uniqueness},
language = {eng},
number = {2},
pages = {113-141},
publisher = {University of Ostrava},
title = {New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative},
url = {http://eudml.org/doc/295026},
volume = {27},
year = {2019},
}

TY - JOUR
AU - Arioua, Yacine
AU - Titraoui, Maria
TI - New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 2
SP - 113
EP - 141
AB - In this paper, we introduce a new class of boundary value problem for nonlinear fractional differential equations involving the Erdélyi-Kober differential operator on an infinite interval. Existence and uniqueness results for a positive solution of the given problem are obtained by using the Banach contraction principle, the Leray-Schauder nonlinear alternative, and Guo-Krasnosel'skii fixed point theorem in a special Banach space. To that end, some examples are presented to illustrate the usefulness of our main results.
LA - eng
KW - Fractional differential equations; Boundary value problems; Erdélyi-Kober derivative; Fixed point theorems; Existence; Uniqueness
UR - http://eudml.org/doc/295026
ER -

References

top
  1. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J., Hadamard-type fractional differential equations, inclusions and inequalities, 2017, Springer International Publishing, (2017) MR3616285
  2. Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A., 10.3846/13926292.2017.1274920, Math. Model. Anal., 22, 2, 2017, 121-139, (2017) MR3625429DOI10.3846/13926292.2017.1274920
  3. Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A., 10.2298/FIL1714515A, Filomat, 31, 14, 2017, 4515-4529, (2017) MR3730375DOI10.2298/FIL1714515A
  4. Agarwal, R.P., O'Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations, 2001, Kluwer Academic, Dordrecht, (2001) Zbl0988.34002MR1845855
  5. Bartle, R.G., A modern theory of integration, 32, 2001, Amer. Math. Soc., Providence, Rhode Island, (2001) MR1817647
  6. Corduneanu, C., Integral Equations and Stability of Feedback Systems, 1973, Academic Press, New York, (1973) Zbl0273.45001MR0358245
  7. Das, S., Functional Fractional Calculus for System Identification and Controls, 2008, Springer-Verlag Berlin Heidelberg, (2008) MR2414740
  8. Diethelm, K., The Analysis of Fractional Differential Equations, 2010, Springer, Berlin, (2010) Zbl1215.34001MR2680847
  9. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, 2006, Elsevier Science B.V, Amsterdam, (2006) Zbl1092.45003MR2218073
  10. Kiryakova, V., A brief story about the operators of the generalized fractional calculus, Frac. Calc. Appl. Anal., 11, 2, 2008, 203-220, (2008) MR2401328
  11. Kiryakova, V., Generalized Fractional Calculus and Applications, 1994, Longman and John Wiley, New York, (1994) MR1265940
  12. Kiryakova, V., Luchko, Y., Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators, Cent. Eur. J. Phys., 11, 10, 2013, 1314-1336, (2013) 
  13. Liu, X., Jia, M., Multiple solutions of nonlocal boundary value problems for fractional differential equations on half-line, Electron. J. Qual. Theory Differ. Equ., 56, 1-14. MR2825141
  14. Luchko, Y., Operational rules for a mixed operator of the Erdélyi-Kober type, Fract. Calc. Appl. Anal., 7, 3, 2007, 339-364, (2007) MR2252570
  15. Luchko, Y., Trujillo, J., Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal., 10, 3, 2007, 249-267, (2007) MR2382781
  16. Maagli, H., Dhifli, A., Positive solutions to a nonlinear fractional Dirichlet problem on the half-space, Electron. J. Differ. Equ., 50, 2014, 1-7, (2014) MR3177559
  17. Mathai, A.M., Haubold, H.J., Erdélyi-Kober Fractional Calculus, 2018, Springer Nature, Singapore Pte Ltd, (2018) MR3838388
  18. Ntouyas, S.K., 10.7494/OpMath.2013.33.1.117, Opuscula Math., 33, 1, 2013, 117-138, (2013) MR3008027DOI10.7494/OpMath.2013.33.1.117
  19. Pagnini, G., 10.2478/s13540-012-0008-1, Fract. Calc. Appl. Anal., 15, 1, 2012, 117-127, (2012) MR2872114DOI10.2478/s13540-012-0008-1
  20. Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering, 1999, Academic Press, New York, (1999) MR1658022
  21. Sabatier, J., Agrawal, O.P., Machado, J.A. Tenreiro, Advances in Fractional Calculus Theoretical Developments and Applicationsin Physics and Engineering, 2007, Springer, (2007) MR2432163
  22. Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integral and Derivatives Theory and Applications, 1993, Gordon and Breach, Switzerland, (1993) MR1347689
  23. A1-Saqabi, B., Kiryakova, V.S., Explicit solutions of fractional integral and differential equations involving Erdé1yi-Kober operators, Appl. Math. Comput., 95, 1998, 1-13, (1998) MR1630272
  24. Sneddon, I.N., Mixed Boundary Value Problems in Potential Theory, 1966, North-Holland Publ., Amsterdam, (1966) MR0216018
  25. Sneddon, I.N., 10.1007/BFb0067097, Lect Notes Math, 457, 1975, 37-79, Springer-Verlag, New York, (1975) MR0487301DOI10.1007/BFb0067097
  26. Sneddon, I.N., The Use of Operators of Fractional Integration in Applied Mathematics, 1979, RWN Polish Sci. Publ., Warszawa-Poznan, (1979) MR0604924
  27. Sun, Q., Meng, S., Cu, Y., Existence results for fractional order differential equation with nonlocal Erdélyi-Kober and generalized Riemann-Liouville type integral boundary conditions at resonance, Adv. Difference Equ., 2018, 243, (2018) MR3829286
  28. Yan, B., Liu, Y., Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line, Appl. Math. Comput., 147, 3, 2004, 629-644, (2004) Zbl1045.34009MR2011077
  29. Yan, B., O'Regan, D., Agarwal, and R.P., Unbounded solutions for singular boundary value problems on the semi-infinite interval Upper and lower solutions and multiplicity, Int. J. Comput. Appl. Math., 197, 2, 2006, 365-386, (2006) MR2260412
  30. Zhao, Z., 10.1090/S0002-9939-1994-1185276-5, Proc. Amer. Math. Soc., 121, 2, 1994, 465-469, (1994) MR1185276DOI10.1090/S0002-9939-1994-1185276-5
  31. Zhao, X., Ge, W., 10.1007/s12190-008-0113-9, J. Appl. Math. Comput., 28, 1, 2008, 391-403, (2008) MR2430946DOI10.1007/s12190-008-0113-9
  32. Zhao, X., Ge, W., 10.1007/s10440-008-9329-9, Acta Appl. Math., 109, 2010, 495-505, (2010) MR2585801DOI10.1007/s10440-008-9329-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.