New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative
Communications in Mathematics (2019)
- Volume: 27, Issue: 2, page 113-141
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topArioua, Yacine, and Titraoui, Maria. "New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative." Communications in Mathematics 27.2 (2019): 113-141. <http://eudml.org/doc/295026>.
@article{Arioua2019,
abstract = {In this paper, we introduce a new class of boundary value problem for nonlinear fractional differential equations involving the Erdélyi-Kober differential operator on an infinite interval. Existence and uniqueness results for a positive solution of the given problem are obtained by using the Banach contraction principle, the Leray-Schauder nonlinear alternative, and Guo-Krasnosel'skii fixed point theorem in a special Banach space. To that end, some examples are presented to illustrate the usefulness of our main results.},
author = {Arioua, Yacine, Titraoui, Maria},
journal = {Communications in Mathematics},
keywords = {Fractional differential equations; Boundary value problems; Erdélyi-Kober derivative; Fixed point theorems; Existence; Uniqueness},
language = {eng},
number = {2},
pages = {113-141},
publisher = {University of Ostrava},
title = {New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative},
url = {http://eudml.org/doc/295026},
volume = {27},
year = {2019},
}
TY - JOUR
AU - Arioua, Yacine
AU - Titraoui, Maria
TI - New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 2
SP - 113
EP - 141
AB - In this paper, we introduce a new class of boundary value problem for nonlinear fractional differential equations involving the Erdélyi-Kober differential operator on an infinite interval. Existence and uniqueness results for a positive solution of the given problem are obtained by using the Banach contraction principle, the Leray-Schauder nonlinear alternative, and Guo-Krasnosel'skii fixed point theorem in a special Banach space. To that end, some examples are presented to illustrate the usefulness of our main results.
LA - eng
KW - Fractional differential equations; Boundary value problems; Erdélyi-Kober derivative; Fixed point theorems; Existence; Uniqueness
UR - http://eudml.org/doc/295026
ER -
References
top- Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J., Hadamard-type fractional differential equations, inclusions and inequalities, 2017, Springer International Publishing, (2017) MR3616285
- Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A., 10.3846/13926292.2017.1274920, Math. Model. Anal., 22, 2, 2017, 121-139, (2017) MR3625429DOI10.3846/13926292.2017.1274920
- Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A., 10.2298/FIL1714515A, Filomat, 31, 14, 2017, 4515-4529, (2017) MR3730375DOI10.2298/FIL1714515A
- Agarwal, R.P., O'Regan, D., Infinite Interval Problems for Differential, Difference and Integral Equations, 2001, Kluwer Academic, Dordrecht, (2001) Zbl0988.34002MR1845855
- Bartle, R.G., A modern theory of integration, 32, 2001, Amer. Math. Soc., Providence, Rhode Island, (2001) MR1817647
- Corduneanu, C., Integral Equations and Stability of Feedback Systems, 1973, Academic Press, New York, (1973) Zbl0273.45001MR0358245
- Das, S., Functional Fractional Calculus for System Identification and Controls, 2008, Springer-Verlag Berlin Heidelberg, (2008) MR2414740
- Diethelm, K., The Analysis of Fractional Differential Equations, 2010, Springer, Berlin, (2010) Zbl1215.34001MR2680847
- Kilbas, A.A., Srivastava, H.H., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, 2006, Elsevier Science B.V, Amsterdam, (2006) Zbl1092.45003MR2218073
- Kiryakova, V., A brief story about the operators of the generalized fractional calculus, Frac. Calc. Appl. Anal., 11, 2, 2008, 203-220, (2008) MR2401328
- Kiryakova, V., Generalized Fractional Calculus and Applications, 1994, Longman and John Wiley, New York, (1994) MR1265940
- Kiryakova, V., Luchko, Y., Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators, Cent. Eur. J. Phys., 11, 10, 2013, 1314-1336, (2013)
- Liu, X., Jia, M., Multiple solutions of nonlocal boundary value problems for fractional differential equations on half-line, Electron. J. Qual. Theory Differ. Equ., 56, 1-14. MR2825141
- Luchko, Y., Operational rules for a mixed operator of the Erdélyi-Kober type, Fract. Calc. Appl. Anal., 7, 3, 2007, 339-364, (2007) MR2252570
- Luchko, Y., Trujillo, J., Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal., 10, 3, 2007, 249-267, (2007) MR2382781
- Maagli, H., Dhifli, A., Positive solutions to a nonlinear fractional Dirichlet problem on the half-space, Electron. J. Differ. Equ., 50, 2014, 1-7, (2014) MR3177559
- Mathai, A.M., Haubold, H.J., Erdélyi-Kober Fractional Calculus, 2018, Springer Nature, Singapore Pte Ltd, (2018) MR3838388
- Ntouyas, S.K., 10.7494/OpMath.2013.33.1.117, Opuscula Math., 33, 1, 2013, 117-138, (2013) MR3008027DOI10.7494/OpMath.2013.33.1.117
- Pagnini, G., 10.2478/s13540-012-0008-1, Fract. Calc. Appl. Anal., 15, 1, 2012, 117-127, (2012) MR2872114DOI10.2478/s13540-012-0008-1
- Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering, 1999, Academic Press, New York, (1999) MR1658022
- Sabatier, J., Agrawal, O.P., Machado, J.A. Tenreiro, Advances in Fractional Calculus Theoretical Developments and Applicationsin Physics and Engineering, 2007, Springer, (2007) MR2432163
- Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integral and Derivatives Theory and Applications, 1993, Gordon and Breach, Switzerland, (1993) MR1347689
- A1-Saqabi, B., Kiryakova, V.S., Explicit solutions of fractional integral and differential equations involving Erdé1yi-Kober operators, Appl. Math. Comput., 95, 1998, 1-13, (1998) MR1630272
- Sneddon, I.N., Mixed Boundary Value Problems in Potential Theory, 1966, North-Holland Publ., Amsterdam, (1966) MR0216018
- Sneddon, I.N., 10.1007/BFb0067097, Lect Notes Math, 457, 1975, 37-79, Springer-Verlag, New York, (1975) MR0487301DOI10.1007/BFb0067097
- Sneddon, I.N., The Use of Operators of Fractional Integration in Applied Mathematics, 1979, RWN Polish Sci. Publ., Warszawa-Poznan, (1979) MR0604924
- Sun, Q., Meng, S., Cu, Y., Existence results for fractional order differential equation with nonlocal Erdélyi-Kober and generalized Riemann-Liouville type integral boundary conditions at resonance, Adv. Difference Equ., 2018, 243, (2018) MR3829286
- Yan, B., Liu, Y., Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line, Appl. Math. Comput., 147, 3, 2004, 629-644, (2004) Zbl1045.34009MR2011077
- Yan, B., O'Regan, D., Agarwal, and R.P., Unbounded solutions for singular boundary value problems on the semi-infinite interval Upper and lower solutions and multiplicity, Int. J. Comput. Appl. Math., 197, 2, 2006, 365-386, (2006) MR2260412
- Zhao, Z., 10.1090/S0002-9939-1994-1185276-5, Proc. Amer. Math. Soc., 121, 2, 1994, 465-469, (1994) MR1185276DOI10.1090/S0002-9939-1994-1185276-5
- Zhao, X., Ge, W., 10.1007/s12190-008-0113-9, J. Appl. Math. Comput., 28, 1, 2008, 391-403, (2008) MR2430946DOI10.1007/s12190-008-0113-9
- Zhao, X., Ge, W., 10.1007/s10440-008-9329-9, Acta Appl. Math., 109, 2010, 495-505, (2010) MR2585801DOI10.1007/s10440-008-9329-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.