Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis
Communications in Mathematics (2019)
- Volume: 27, Issue: 2, page 171-185
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topChauhan, Astha, and Arora, Rajan. "Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis." Communications in Mathematics 27.2 (2019): 171-185. <http://eudml.org/doc/295028>.
@article{Chauhan2019,
abstract = {In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem.},
author = {Chauhan, Astha, Arora, Rajan},
journal = {Communications in Mathematics},
keywords = {Time fractional Kupershmidt equation; Fractional Lie symmetry method; Riemann-Lioville's fractional derivative; Conservation laws; Power series solution},
language = {eng},
number = {2},
pages = {171-185},
publisher = {University of Ostrava},
title = {Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis},
url = {http://eudml.org/doc/295028},
volume = {27},
year = {2019},
}
TY - JOUR
AU - Chauhan, Astha
AU - Arora, Rajan
TI - Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 2
SP - 171
EP - 185
AB - In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem.
LA - eng
KW - Time fractional Kupershmidt equation; Fractional Lie symmetry method; Riemann-Lioville's fractional derivative; Conservation laws; Power series solution
UR - http://eudml.org/doc/295028
ER -
References
top- Arora, R., Chauhan, A., 10.1007/s40819-019-0603-5, International Journal of Applied and Computational Mathematics, 5, 1, 2019, 15, Springer, (2019) MR3896708DOI10.1007/s40819-019-0603-5
- Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I., 10.15388/NA.2017.6.9, Nonlinear Analysis: Modelling and Control, 22, 6, 2017, 861-876, (2017) MR3724625DOI10.15388/NA.2017.6.9
- Baleanu, D., Yusuf, A., Aliyu, A.I., 10.1186/s13662-018-1468-3, Advances in Difference Equations, 2018, 1, 2018, 46, Springer, (2018) MR3757664DOI10.1186/s13662-018-1468-3
- Bluman, G.W., Cole, J.D., The general similarity solution of the heat equation, Journal of Mathematics and Mechanics, 18, 11, 1969, 1025-1042, JSTOR, (1969) MR0293257
- Bluman, G.W., Kumei, S., 10.1016/0022-247X(89)90322-3, Journal of Mathematical Analysis and Applications, 138, 1, 1989, 95-105, Academic Press, (1989) MR0988322DOI10.1016/0022-247X(89)90322-3
- Diethelm, K., Ford, N.J., Freed, A.D., 10.1023/A:1016592219341, Nonlinear Dynamics, 29, 1-4, 2002, 3-22, Springer, (2002) MR1926466DOI10.1023/A:1016592219341
- El-Nabulsi, R.A., 10.1007/s40306-014-0079-7, Acta Mathematica Vietnamica, 40, 4, 2015, 689-703, Springer, (2015) MR3412572DOI10.1007/s40306-014-0079-7
- Feng, L.L., Tian, S.F., Wang, X.B., Zhang, T.T., 10.1088/0253-6102/66/3/321, Communications in Theoretical Physics, 66, 3, 2016, 321, IOP Publishing, (2016) MR3674580DOI10.1088/0253-6102/66/3/321
- Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y., Symmetry properties of fractional diffusion equations, Physica Scripta, 2009, T136, 2009, 014016, IOP Publishing, (2009)
- Hilfer, R., Applications of fractional calculus in physics, 35, 12, 2000, World Scientific, (2000) Zbl0998.26002MR1890104
- Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D., 10.1016/j.physa.2017.12.119, Physica A: Statistical Mechanics and its Applications, 496, 2018, 371-383, Elsevier, (2018) MR3759755DOI10.1016/j.physa.2017.12.119
- Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Fractional differential equations: A emergent field in applied and mathematical sciences, Factorization, Singular Operators and Related Problems, 2003, 151-173, Springer, (2003) MR2001597
- Kiryakova, V.S., Generalized fractional calculus and applications, 1993, CRC Press, (1993) MR1265940
- Lie, S., 10.1007/BF01446218, Mathematische Annalen, 16, 4, 1880, 441-528, Springer, (1880) MR1510035DOI10.1007/BF01446218
- Liu, W., Chen, K., 10.1007/s12043-013-0583-7, Pramana, 81, 3, 2013, 377-384, Springer, (2013) DOI10.1007/s12043-013-0583-7
- Luchko, Y., Gorenflo, R., Scale-invariant solutions of a partial differential equation of fractional order, Fractional Calculus and Applied Analysis, 3, 1, 1998, 63-78, (1998) MR1662409
- Lukashchuk, S.Y., 10.1007/s11071-015-1906-7, Nonlinear Dynamics, 80, 1--2, 2015, 791-802, Springer, (2015) MR3324298DOI10.1007/s11071-015-1906-7
- Noether, E., 10.1080/00411457108231446, Transport Theory and Statistical Physics, 1, 3, 1971, 186-207, Taylor & Francis, (1971) MR0406752DOI10.1080/00411457108231446
- Olver, P.J., Applications of Lie groups to differential equations, 107, 2000, Springer Science & Business Media, (2000) MR0836734
- Ortigueira, M.D., Machado, J.A.T., 10.1016/j.jcp.2014.07.019, Journal of computational Physics, 293, 2015, 4-13, Elsevier, (2015) MR3342452DOI10.1016/j.jcp.2014.07.019
- Osler, T.J., 10.1137/0118059, SIAM Journal on Applied Mathematics, 18, 3, 1970, 658-674, SIAM, (1970) MR0260942DOI10.1137/0118059
- Pandir, Y., Gurefe, Y., Misirli, E., 10.7763/IJMO.2013.V3.296, International Journal of Modeling and Optimization, 3, 4, 2013, 349-351, IACSIT Press, (2013) MR2928587DOI10.7763/IJMO.2013.V3.296
- Podlubny, I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1998, Elsevier, (1998) MR1658022
- Qin, Ch.Y., Tian, Sh.F., Wang, X.B., Zhang, T.T., Lie symmetries, conservation laws and explicit solutions for time fractional Rosenau-Haynam equation, Communications in Theoretical Physics, 67, 2, 2017, 157, IOP Publishing, (2017) MR3610395
- Ray, S.S., Sahoo, S., Das, S., Formulation and solutions of fractional continuously variable order mass-spring-damper systems controlled by viscoelastic and viscous-viscoelastic dampers, Advances in Mechanical Engineering, 8, 5, 2016, 1-17, SAGE Publications Sage UK: London, England, (2016)
- Richard, H., Fractional Calculus: an introduction for physicists, 2014, World Scientific, (2014)
- Rossikhin, Y.A., Shitikova, M.V., 10.1002/1521-4001(200106)81:6<363::AID-ZAMM363>3.0.CO;2-9, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 81, 6, 2001, 363-376, Wiley Online Library, (2001) MR1834711DOI10.1002/1521-4001(200106)81:6<363::AID-ZAMM363>3.0.CO;2-9
- Rossikhin, Y.A., Shitikova, M.V., 10.1115/1.4000563, Applied Mechanics Reviews, 63, 1, 2010, 010801(1-52), American Society of Mechanical Engineers, (2010) DOI10.1115/1.4000563
- Sahadevan, R., Bakkyaraj, T., 10.1016/j.jmaa.2012.04.006, Journal of Mathematical Analysis and Applications, 393, 2, 2012, 341-347, Elsevier, (2012) MR2921677DOI10.1016/j.jmaa.2012.04.006
- Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional integrals and derivatives: theory and applications, 1993, Gordon and Breach, Switzerland. (1993) MR1347689
- Shang, N., Zheng, B., Exact solutions for three fractional partial differential equations by the method, Int. J. Appl. Math, 43, 3, 2013, 114-119, (2013) MR3113392
- Singla, K., Gupta, R.K., 10.1007/s11071-017-3456-7, Nonlinear Dynamics, 89, 1, 2017, 321-331, Springer, (2017) MR3663696DOI10.1007/s11071-017-3456-7
- Tang, B., He, Y., Wei, L., Zhang, X., 10.1016/j.physleta.2012.07.018, Physics Letters A, 376, 38--39, 2012, 2588-2590, Elsevier, (2012) MR2961121DOI10.1016/j.physleta.2012.07.018
- Tarasov, V.E., 10.1016/j.cnsns.2015.06.007, Communications in Nonlinear Science and Numerical Simulation, 30, 1--3, 2016, 1-4, Elsevier, (2016) MR3420022DOI10.1016/j.cnsns.2015.06.007
- Wang, G.W., Liu, X.Q., Zhang, Y.Y., 10.1016/j.cnsns.2012.11.032, Communications in Nonlinear Science and Numerical Simulation, 18, 9, 2013, 2321-2326, Elsevier, (2013) MR3042039DOI10.1016/j.cnsns.2012.11.032
- Wang, X.B., Tian, S.F., Qin, Ch.Y., Zhang, T.T., Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, EPL (Europhysics Letters), 114, 2, 2016, 20003, IOP Publishing, (2016) MR3884385
- Wang, X.B., Tian, S.F., Qin, Ch.Y., Zhang, T.T., 10.1080/14029251.2017.1375688, Journal of Nonlinear Mathematical Physics, 24, 4, 2017, 516-530, Taylor & Francis, (2017) MR3698650DOI10.1080/14029251.2017.1375688
- Wang, X.B., Tian, S.F., Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation, Computational and Applied Mathematics, 2018, 1-13, Springer, (2018) MR3885819
- Yıldırım, A., An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 10, 4, 2009, 445-450, De Gruyter, (2009)
- Yusuf, A., Aliyu, A.I., Baleanu, D., 10.1007/s11082-018-1373-8, Optical and Quantum Electronics, 50, 2, 2018, 94, Springer, (2018) MR3739715DOI10.1007/s11082-018-1373-8
- Zhang, S., A generalized Exp-function method for fractional Riccati differential equations, Communications In Fractional Calculus, 1, 2010, 48-51, (2010)
- Zhang, Y., Mei, J., Zhang, X., 10.1016/j.amc.2018.05.030, Applied Mathematics and Computation, 337, 2018, 408-418, Elsevier, (2018) MR3827622DOI10.1016/j.amc.2018.05.030
- Zhdanov, R.Z., 10.1088/0305-4470/28/13/027, Journal of Physics A: Mathematical and General, 28, 13, 1995, 3841, IOP Publishing, (1995) MR1352384DOI10.1088/0305-4470/28/13/027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.