Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis

Astha Chauhan; Rajan Arora

Communications in Mathematics (2019)

  • Volume: 27, Issue: 2, page 171-185
  • ISSN: 1804-1388

Abstract

top
In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem.

How to cite

top

Chauhan, Astha, and Arora, Rajan. "Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis." Communications in Mathematics 27.2 (2019): 171-185. <http://eudml.org/doc/295028>.

@article{Chauhan2019,
abstract = {In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem.},
author = {Chauhan, Astha, Arora, Rajan},
journal = {Communications in Mathematics},
keywords = {Time fractional Kupershmidt equation; Fractional Lie symmetry method; Riemann-Lioville's fractional derivative; Conservation laws; Power series solution},
language = {eng},
number = {2},
pages = {171-185},
publisher = {University of Ostrava},
title = {Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis},
url = {http://eudml.org/doc/295028},
volume = {27},
year = {2019},
}

TY - JOUR
AU - Chauhan, Astha
AU - Arora, Rajan
TI - Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis
JO - Communications in Mathematics
PY - 2019
PB - University of Ostrava
VL - 27
IS - 2
SP - 171
EP - 185
AB - In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem.
LA - eng
KW - Time fractional Kupershmidt equation; Fractional Lie symmetry method; Riemann-Lioville's fractional derivative; Conservation laws; Power series solution
UR - http://eudml.org/doc/295028
ER -

References

top
  1. Arora, R., Chauhan, A., 10.1007/s40819-019-0603-5, International Journal of Applied and Computational Mathematics, 5, 1, 2019, 15, Springer, (2019) MR3896708DOI10.1007/s40819-019-0603-5
  2. Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I., 10.15388/NA.2017.6.9, Nonlinear Analysis: Modelling and Control, 22, 6, 2017, 861-876, (2017) MR3724625DOI10.15388/NA.2017.6.9
  3. Baleanu, D., Yusuf, A., Aliyu, A.I., 10.1186/s13662-018-1468-3, Advances in Difference Equations, 2018, 1, 2018, 46, Springer, (2018) MR3757664DOI10.1186/s13662-018-1468-3
  4. Bluman, G.W., Cole, J.D., The general similarity solution of the heat equation, Journal of Mathematics and Mechanics, 18, 11, 1969, 1025-1042, JSTOR, (1969) MR0293257
  5. Bluman, G.W., Kumei, S., 10.1016/0022-247X(89)90322-3, Journal of Mathematical Analysis and Applications, 138, 1, 1989, 95-105, Academic Press, (1989) MR0988322DOI10.1016/0022-247X(89)90322-3
  6. Diethelm, K., Ford, N.J., Freed, A.D., 10.1023/A:1016592219341, Nonlinear Dynamics, 29, 1-4, 2002, 3-22, Springer, (2002) MR1926466DOI10.1023/A:1016592219341
  7. El-Nabulsi, R.A., 10.1007/s40306-014-0079-7, Acta Mathematica Vietnamica, 40, 4, 2015, 689-703, Springer, (2015) MR3412572DOI10.1007/s40306-014-0079-7
  8. Feng, L.L., Tian, S.F., Wang, X.B., Zhang, T.T., 10.1088/0253-6102/66/3/321, Communications in Theoretical Physics, 66, 3, 2016, 321, IOP Publishing, (2016) MR3674580DOI10.1088/0253-6102/66/3/321
  9. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y., Symmetry properties of fractional diffusion equations, Physica Scripta, 2009, T136, 2009, 014016, IOP Publishing, (2009) 
  10. Hilfer, R., Applications of fractional calculus in physics, 35, 12, 2000, World Scientific, (2000) Zbl0998.26002MR1890104
  11. Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D., 10.1016/j.physa.2017.12.119, Physica A: Statistical Mechanics and its Applications, 496, 2018, 371-383, Elsevier, (2018) MR3759755DOI10.1016/j.physa.2017.12.119
  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Fractional differential equations: A emergent field in applied and mathematical sciences, Factorization, Singular Operators and Related Problems, 2003, 151-173, Springer, (2003) MR2001597
  13. Kiryakova, V.S., Generalized fractional calculus and applications, 1993, CRC Press, (1993) MR1265940
  14. Lie, S., 10.1007/BF01446218, Mathematische Annalen, 16, 4, 1880, 441-528, Springer, (1880) MR1510035DOI10.1007/BF01446218
  15. Liu, W., Chen, K., 10.1007/s12043-013-0583-7, Pramana, 81, 3, 2013, 377-384, Springer, (2013) DOI10.1007/s12043-013-0583-7
  16. Luchko, Y., Gorenflo, R., Scale-invariant solutions of a partial differential equation of fractional order, Fractional Calculus and Applied Analysis, 3, 1, 1998, 63-78, (1998) MR1662409
  17. Lukashchuk, S.Y., 10.1007/s11071-015-1906-7, Nonlinear Dynamics, 80, 1--2, 2015, 791-802, Springer, (2015) MR3324298DOI10.1007/s11071-015-1906-7
  18. Noether, E., 10.1080/00411457108231446, Transport Theory and Statistical Physics, 1, 3, 1971, 186-207, Taylor & Francis, (1971) MR0406752DOI10.1080/00411457108231446
  19. Olver, P.J., Applications of Lie groups to differential equations, 107, 2000, Springer Science & Business Media, (2000) MR0836734
  20. Ortigueira, M.D., Machado, J.A.T., 10.1016/j.jcp.2014.07.019, Journal of computational Physics, 293, 2015, 4-13, Elsevier, (2015) MR3342452DOI10.1016/j.jcp.2014.07.019
  21. Osler, T.J., 10.1137/0118059, SIAM Journal on Applied Mathematics, 18, 3, 1970, 658-674, SIAM, (1970) MR0260942DOI10.1137/0118059
  22. Pandir, Y., Gurefe, Y., Misirli, E., 10.7763/IJMO.2013.V3.296, International Journal of Modeling and Optimization, 3, 4, 2013, 349-351, IACSIT Press, (2013) MR2928587DOI10.7763/IJMO.2013.V3.296
  23. Podlubny, I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1998, Elsevier, (1998) MR1658022
  24. Qin, Ch.Y., Tian, Sh.F., Wang, X.B., Zhang, T.T., Lie symmetries, conservation laws and explicit solutions for time fractional Rosenau-Haynam equation, Communications in Theoretical Physics, 67, 2, 2017, 157, IOP Publishing, (2017) MR3610395
  25. Ray, S.S., Sahoo, S., Das, S., Formulation and solutions of fractional continuously variable order mass-spring-damper systems controlled by viscoelastic and viscous-viscoelastic dampers, Advances in Mechanical Engineering, 8, 5, 2016, 1-17, SAGE Publications Sage UK: London, England, (2016) 
  26. Richard, H., Fractional Calculus: an introduction for physicists, 2014, World Scientific, (2014) 
  27. Rossikhin, Y.A., Shitikova, M.V., 10.1002/1521-4001(200106)81:6<363::AID-ZAMM363>3.0.CO;2-9, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 81, 6, 2001, 363-376, Wiley Online Library, (2001) MR1834711DOI10.1002/1521-4001(200106)81:6<363::AID-ZAMM363>3.0.CO;2-9
  28. Rossikhin, Y.A., Shitikova, M.V., 10.1115/1.4000563, Applied Mechanics Reviews, 63, 1, 2010, 010801(1-52), American Society of Mechanical Engineers, (2010) DOI10.1115/1.4000563
  29. Sahadevan, R., Bakkyaraj, T., 10.1016/j.jmaa.2012.04.006, Journal of Mathematical Analysis and Applications, 393, 2, 2012, 341-347, Elsevier, (2012) MR2921677DOI10.1016/j.jmaa.2012.04.006
  30. Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional integrals and derivatives: theory and applications, 1993, Gordon and Breach, Switzerland. (1993) MR1347689
  31. Shang, N., Zheng, B., Exact solutions for three fractional partial differential equations by the ( G ' / G ) method, Int. J. Appl. Math, 43, 3, 2013, 114-119, (2013) MR3113392
  32. Singla, K., Gupta, R.K., 10.1007/s11071-017-3456-7, Nonlinear Dynamics, 89, 1, 2017, 321-331, Springer, (2017) MR3663696DOI10.1007/s11071-017-3456-7
  33. Tang, B., He, Y., Wei, L., Zhang, X., 10.1016/j.physleta.2012.07.018, Physics Letters A, 376, 38--39, 2012, 2588-2590, Elsevier, (2012) MR2961121DOI10.1016/j.physleta.2012.07.018
  34. Tarasov, V.E., 10.1016/j.cnsns.2015.06.007, Communications in Nonlinear Science and Numerical Simulation, 30, 1--3, 2016, 1-4, Elsevier, (2016) MR3420022DOI10.1016/j.cnsns.2015.06.007
  35. Wang, G.W., Liu, X.Q., Zhang, Y.Y., 10.1016/j.cnsns.2012.11.032, Communications in Nonlinear Science and Numerical Simulation, 18, 9, 2013, 2321-2326, Elsevier, (2013) MR3042039DOI10.1016/j.cnsns.2012.11.032
  36. Wang, X.B., Tian, S.F., Qin, Ch.Y., Zhang, T.T., Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, EPL (Europhysics Letters), 114, 2, 2016, 20003, IOP Publishing, (2016) MR3884385
  37. Wang, X.B., Tian, S.F., Qin, Ch.Y., Zhang, T.T., 10.1080/14029251.2017.1375688, Journal of Nonlinear Mathematical Physics, 24, 4, 2017, 516-530, Taylor & Francis, (2017) MR3698650DOI10.1080/14029251.2017.1375688
  38. Wang, X.B., Tian, S.F., Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation, Computational and Applied Mathematics, 2018, 1-13, Springer, (2018) MR3885819
  39. Yıldırım, A., An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 10, 4, 2009, 445-450, De Gruyter, (2009) 
  40. Yusuf, A., Aliyu, A.I., Baleanu, D., 10.1007/s11082-018-1373-8, Optical and Quantum Electronics, 50, 2, 2018, 94, Springer, (2018) MR3739715DOI10.1007/s11082-018-1373-8
  41. Zhang, S., A generalized Exp-function method for fractional Riccati differential equations, Communications In Fractional Calculus, 1, 2010, 48-51, (2010) 
  42. Zhang, Y., Mei, J., Zhang, X., 10.1016/j.amc.2018.05.030, Applied Mathematics and Computation, 337, 2018, 408-418, Elsevier, (2018) MR3827622DOI10.1016/j.amc.2018.05.030
  43. Zhdanov, R.Z., 10.1088/0305-4470/28/13/027, Journal of Physics A: Mathematical and General, 28, 13, 1995, 3841, IOP Publishing, (1995) MR1352384DOI10.1088/0305-4470/28/13/027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.