Tracking control design for nonlinear polynomial systems via augmented error system approach and block pulse functions technique

Bassem Iben Warrad; Mohamed Karim Bouafoura; Naceur Benhadj Braiek

Kybernetika (2019)

  • Volume: 55, Issue: 5, page 831-851
  • ISSN: 0023-5954

Abstract

top
In this paper, tracking control design for a class of nonlinear polynomial systems is investigated by augmented error system approach and block pulse functions technique. The proposed method is based on the projection of the close loop augmented system and the associated linear reference model that it should follow over a basis of block pulse functions. The main advantage of using this tool is that it allows to transform the analytical differential calculus into an algebraic one relatively easy to solve. The developments presented have led to the formulation of a linear system of algebraic equations depending only on parameters of the feedback control. Once the control gains are determined by solving the latter optimization problem in least square sense, the practical stability of the closed loop augmented system is checked through given conditions. A double inverted pendulums benchmark is used to validate the proposed tracking control method.

How to cite

top

Iben Warrad, Bassem, Bouafoura, Mohamed Karim, and Benhadj Braiek, Naceur. "Tracking control design for nonlinear polynomial systems via augmented error system approach and block pulse functions technique." Kybernetika 55.5 (2019): 831-851. <http://eudml.org/doc/295053>.

@article{IbenWarrad2019,
abstract = {In this paper, tracking control design for a class of nonlinear polynomial systems is investigated by augmented error system approach and block pulse functions technique. The proposed method is based on the projection of the close loop augmented system and the associated linear reference model that it should follow over a basis of block pulse functions. The main advantage of using this tool is that it allows to transform the analytical differential calculus into an algebraic one relatively easy to solve. The developments presented have led to the formulation of a linear system of algebraic equations depending only on parameters of the feedback control. Once the control gains are determined by solving the latter optimization problem in least square sense, the practical stability of the closed loop augmented system is checked through given conditions. A double inverted pendulums benchmark is used to validate the proposed tracking control method.},
author = {Iben Warrad, Bassem, Bouafoura, Mohamed Karim, Benhadj Braiek, Naceur},
journal = {Kybernetika},
keywords = {tracking control; nonlinear polynomial systems; augmented error system approach; block pulse functions; practical stability},
language = {eng},
number = {5},
pages = {831-851},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Tracking control design for nonlinear polynomial systems via augmented error system approach and block pulse functions technique},
url = {http://eudml.org/doc/295053},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Iben Warrad, Bassem
AU - Bouafoura, Mohamed Karim
AU - Benhadj Braiek, Naceur
TI - Tracking control design for nonlinear polynomial systems via augmented error system approach and block pulse functions technique
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 5
SP - 831
EP - 851
AB - In this paper, tracking control design for a class of nonlinear polynomial systems is investigated by augmented error system approach and block pulse functions technique. The proposed method is based on the projection of the close loop augmented system and the associated linear reference model that it should follow over a basis of block pulse functions. The main advantage of using this tool is that it allows to transform the analytical differential calculus into an algebraic one relatively easy to solve. The developments presented have led to the formulation of a linear system of algebraic equations depending only on parameters of the feedback control. Once the control gains are determined by solving the latter optimization problem in least square sense, the practical stability of the closed loop augmented system is checked through given conditions. A double inverted pendulums benchmark is used to validate the proposed tracking control method.
LA - eng
KW - tracking control; nonlinear polynomial systems; augmented error system approach; block pulse functions; practical stability
UR - http://eudml.org/doc/295053
ER -

References

top
  1. Balatif, O., Rachik, M., Labriji, E., Rachik, Z., 10.1093/imamci/dnw005, J. Math. Control Inform. 34 (2017), 973-986. MR3746086DOI10.1093/imamci/dnw005
  2. Belhaouane, M. M., Braiek, N. Benhadj, 10.1007/s12555-011-0301-5, Int. J. Control, Automat. Systems 9 (2011), 425-436. DOI10.1007/s12555-011-0301-5
  3. Braiek, N. Benhadj, 10.1016/0016-0032(95)00038-x, J. Franklin Inst. 332 (1995), 183-193. MR1367190DOI10.1016/0016-0032(95)00038-x
  4. Brewer, J. W., 10.1109/tcs.1978.1084534, IEEE Trans. Circuits Systems 25 (1978), 772-781. MR0510703DOI10.1109/tcs.1978.1084534
  5. Chen, W., Ge, Sh. S., Wu, J., Gong, M., 10.1109/tnnls.2014.2357451, IEEE Tran. Neural Networks Learning Systems 26 (2015), 1842-1854. MR3453124DOI10.1109/tnnls.2014.2357451
  6. Chen, M., Wu, Q. X., Cui, R. X., 10.1016/j.isatra.2012.09.009, ISA Trans. 52 (2013), 198-206. DOI10.1016/j.isatra.2012.09.009
  7. Cui, Y., Zhang, H., Wang, Y., Gao, W., 10.1016/j.fss.2015.11.015, Fuzzy Sets Systems 302 (2016), 52-64. MR3543818DOI10.1016/j.fss.2015.11.015
  8. Cui, Y., Zhang, H., Qu, Q., Luo, C., 10.1016/j.neucom.2017.03.064, Neurocomputing 249 (2017), 191-201. DOI10.1016/j.neucom.2017.03.064
  9. Deb, A., Roychoudhury, S., Sarkar, G., 10.1007/978-3-319-26684-8, Studies in Systems, Decision and Control, 2016. MR3727125DOI10.1007/978-3-319-26684-8
  10. Deb, A., Sarkar, G., Sengupta, A., 10.7135/upo9781843318118, Anthem Press, 2012. MR3586384DOI10.7135/upo9781843318118
  11. Ghorbel, H., Hajjaji, A. El, Souissi., M., Chaabane, M., 10.1115/1.4026467, J. Dynamic Systems, Measurement Control 136 (2014), 4. DOI10.1115/1.4026467
  12. Ginoya, D., Shendge, P. D., Phadke, S. B., 10.1016/j.cnsns.2015.02.008, Comm. Nonlin. Sci. Numer. Simul. 26 (2015), 98-107. MR3332038DOI10.1016/j.cnsns.2015.02.008
  13. Gruyitch, L. T., 10.1201/b19258, CRC Press. Taylor and Francis Group, 2016. DOI10.1201/b19258
  14. Hwang, C., Shih, Y. P., 10.1007/bf00940816, J. Optim. Theory Appl. 45 (1985), 101-112. MR0778160DOI10.1007/bf00940816
  15. Jarzebowska, E., 10.1201/b12262, CRC Press. Taylor and Francis Group, 2012. MR2964364DOI10.1201/b12262
  16. Jemai, W. J., Jerbi, H., Abdelkrim, M. N., 10.1007/s12555-011-0317-x, Int. J. Control Automat. Systems 9 (2011), 566-573. DOI10.1007/s12555-011-0317-x
  17. Lakshmikantham, V., Leela, S., Martynyuk, A. A., 10.1142/1192, World Scientific Publishing, 1990. MR1089428DOI10.1142/1192
  18. Marzban, H. R., 10.1080/00207179.2016.1186288, Int. J. Control 90 (2016), 504-518. MR3604170DOI10.1080/00207179.2016.1186288
  19. Han, Y. Qun, 10.1080/00207721.2018.1453955, Int. J. Systems Sci. 49 (2018), 1391-1402. MR3825710DOI10.1080/00207721.2018.1453955
  20. Rehan, M., Hong, K. Shik, Ge, Sh. Sam, 10.1016/j.nonrwa.2010.11.011, Nonlinear Analysis: Real World Appl. 12 (2011), 1786-1796. MR2781896DOI10.1016/j.nonrwa.2010.11.011
  21. Rotella, F., Dauphin-Tanguy, G., 10.1080/00207178808906195, Int. J. Control 48 (1988), 525-544. MR0957420DOI10.1080/00207178808906195
  22. Shao, X., Wang, H., 10.1155/2014/129247, Math. Problems Engrg. 2014 (2014), 1-10. MR3200860DOI10.1155/2014/129247
  23. Tang, Y., Li, N., Liu, M., Lu, Y., Wang, W., 10.1016/j.ymssp.2017.01.008, Mech. Systems Signal Process. 91 (2017), 382-394. DOI10.1016/j.ymssp.2017.01.008
  24. Tong, S., Wang, T., Li, H. X., 10.1016/s0888-613x(02)00061-0, Int. J. Approx. Reason. 30 (2002), 73-90. MR1906629DOI10.1016/s0888-613x(02)00061-0
  25. Wang, H., Shi, P., Li, H., Zhou, Q., 10.1109/tcyb.2016.2607166, IEEE Trans. Cybernet. 47 (2017), 3075-3087. MR3410700DOI10.1109/tcyb.2016.2607166
  26. Warrad, B. Iben, Bouafoura, M. K., Braiek, N. Benhadj, Tracking control synthesis of nonlinear polynomial systems., In: 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar 2015. 
  27. Warrad, B. Iben, Bouafoura, M. K., Braiek, N. Benhadj, 10.1080/02533839.2018.1459849, J. Chinese Inst. Engineers 41 (2018), 194-205. DOI10.1080/02533839.2018.1459849
  28. Xingling, S., Honglun, W., 10.1002/asjc.1053, Asian J. Control 18 (2016), 316-327. MR3458911DOI10.1002/asjc.1053
  29. Xu, Y., Zhang, J., Liao, F., 10.1186/s13662-015-0596-2, Advances Diff. Equations (2015), 1-17. MR3393013DOI10.1186/s13662-015-0596-2
  30. Yu, Y., Zhong, Y. Sh., 10.1007/s12555-011-0219-y, Int. J. Control Automat. Systems 9 (2011), 366-375. DOI10.1007/s12555-011-0219-y
  31. Yu, Y., Zhong, Y., 10.1186/s13662-015-0596-2, IET Control Theory Appl. 6 (2012), 751-759. MR2952999DOI10.1186/s13662-015-0596-2
  32. Zhang, H., Li, C., Liao, X., 10.1109/tsmcb.2005.860133, IEEE Trans. Syst. Man Cybernet. 36 (2006), 685-698. DOI10.1109/tsmcb.2005.860133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.