A Dieudonné theorem for lattice group-valued measures

Giuseppina Barbieri

Kybernetika (2019)

  • Volume: 55, Issue: 5, page 870-878
  • ISSN: 0023-5954

Abstract

top
A version of Dieudonné theorem is proved for lattice group-valued modular measures on lattice ordered effect algebras. In this way we generalize some results proved in the real-valued case.

How to cite

top

Barbieri, Giuseppina. "A Dieudonné theorem for lattice group-valued measures." Kybernetika 55.5 (2019): 870-878. <http://eudml.org/doc/295081>.

@article{Barbieri2019,
abstract = {A version of Dieudonné theorem is proved for lattice group-valued modular measures on lattice ordered effect algebras. In this way we generalize some results proved in the real-valued case.},
author = {Barbieri, Giuseppina},
journal = {Kybernetika},
keywords = {effect algebra; Dieudonné theorem; modular measures; lattice group},
language = {eng},
number = {5},
pages = {870-878},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A Dieudonné theorem for lattice group-valued measures},
url = {http://eudml.org/doc/295081},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Barbieri, Giuseppina
TI - A Dieudonné theorem for lattice group-valued measures
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 5
SP - 870
EP - 878
AB - A version of Dieudonné theorem is proved for lattice group-valued modular measures on lattice ordered effect algebras. In this way we generalize some results proved in the real-valued case.
LA - eng
KW - effect algebra; Dieudonné theorem; modular measures; lattice group
UR - http://eudml.org/doc/295081
ER -

References

top
  1. Avallone, A., Separating points of measures on effect algebras., Mathematica Slovaca 20 (2006), 203-214. MR2357812
  2. Avallone, A., Cafiero and Nikodym boundedness theorem in effect algebras., Ital. J. Pure Appl. Math. 57 (2007), 2, 129-140. MR2247423
  3. Barbieri, G., On the Dieudonné theorem., Sci. Math. Japon. 70 (2009), 3, 279-284. MR2562049
  4. Bennett, M. K., Foulis, D. J., 10.1007/bf02283036, Found. Phys. 24 (1994), 10, 1331-1352. MR1304942DOI10.1007/bf02283036
  5. Boccuto, A., Dieudonné-type theorems for means with values in Riesz spaces., Tatra Mountains Math. Publ. 8 (1996), 9-42. MR1475257
  6. Boccuto, A., Candeloro, D., Some new results about Brooks-Jewett and Dieudonné-type theorems in (l)-groups., Kybernetika 46 (2010), 6, 1049-1060. MR2797426
  7. Boccuto, A., Dimitriou, X., 10.1007/s00009-018-1222-9, Mediterr. J. Math. 4 (2018), Art. 174, 20 pp. MR3825621DOI10.1007/s00009-018-1222-9
  8. Butnariu, D., Klement, E. P., 10.1007/978-94-017-3602-2, Theory and Decision Library. Series C: Game Theory, Mathematical Programming and Operations Research, 10. Kluwer Academic Publishers Group, Dordrecht 1993. MR2867321DOI10.1007/978-94-017-3602-2
  9. Chovanec, F., Kopka, F., D-posets., Math. Slovaca 44 (1994), 1, 21-34. MR1290269
  10. Dvurečenskij, A., Pulmannová, S., 10.1007/978-94-017-2422-7_1, Kluwer Academic Publishers, Bratislava 2000. Zbl0987.81005MR1861369DOI10.1007/978-94-017-2422-7_1
  11. Epstein, L. G., Zhang, J., 10.1111/1468-0262.00193, Econometrica 69 (2001), 2, 265-306. MR1819756DOI10.1111/1468-0262.00193
  12. Fleischer, I., Traynor, T., Equivalence of group-valued measures on an abstract lattice., Bull. Acad. Polon. Sci. Sci. Math. 28 (1980), 11-12, 549-556. MR0628641
  13. Fremlin, D. H., 10.1112/jlms/s2-11.3.276, J. London Math. Soc. 11 (1975), 2, 276-284. MR0380345DOI10.1112/jlms/s2-11.3.276
  14. Riečan, B., Neubrunn, T., 10.1007/978-94-015-8919-2, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislavia 1997. Zbl0916.28001MR1489521DOI10.1007/978-94-015-8919-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.