Semi-Heyting Algebras and Identities of Associative Type

Juan M. Cornejo; Hanamantagouda P. Sankappanavar

Bulletin of the Section of Logic (2019)

  • Volume: 48, Issue: 2
  • ISSN: 0138-0680

Abstract

top
An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. 𝒮ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras.  They share several important properties with Heyting algebras.  An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of 𝒮ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety 𝒮ℋ of asociative type of length 3.  Our main result shows that there are 3 such subvarities of 𝒮ℋ.

How to cite

top

Juan M. Cornejo, and Hanamantagouda P. Sankappanavar. "Semi-Heyting Algebras and Identities of Associative Type." Bulletin of the Section of Logic 48.2 (2019): null. <http://eudml.org/doc/295515>.

@article{JuanM2019,
abstract = {An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. 𝒮ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras.  They share several important properties with Heyting algebras.  An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of 𝒮ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety 𝒮ℋ of asociative type of length 3.  Our main result shows that there are 3 such subvarities of 𝒮ℋ.},
author = {Juan M. Cornejo, Hanamantagouda P. Sankappanavar},
journal = {Bulletin of the Section of Logic},
keywords = {semi-Heyting algebra; Heyting algebra; identity of associative type; subvariety of associative type},
language = {eng},
number = {2},
pages = {null},
title = {Semi-Heyting Algebras and Identities of Associative Type},
url = {http://eudml.org/doc/295515},
volume = {48},
year = {2019},
}

TY - JOUR
AU - Juan M. Cornejo
AU - Hanamantagouda P. Sankappanavar
TI - Semi-Heyting Algebras and Identities of Associative Type
JO - Bulletin of the Section of Logic
PY - 2019
VL - 48
IS - 2
SP - null
AB - An algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. 𝒮ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras.  They share several important properties with Heyting algebras.  An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of 𝒮ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety 𝒮ℋ of asociative type of length 3.  Our main result shows that there are 3 such subvarities of 𝒮ℋ.
LA - eng
KW - semi-Heyting algebra; Heyting algebra; identity of associative type; subvariety of associative type
UR - http://eudml.org/doc/295515
ER -

References

top
  1. [1] J. C. Abbott, Semi-Boolean algebras, Matematicki Vesnik 19 (1967), pp. 177–198. 
  2. [2] M. Abad, J. M. Cornejo and J. P. Díaz Varela, Free-decomposability in varieties of semi-Heyting algebras, Mathematical Logic Quarterly 58(3) (2012), pp. 168–176. https://doi.org/10.1002/malq.201020092  
  3. [3] M. Abad, J. M. Cornejo and J. P. Díaz Varela, Semi-Heyting algebras term-equivalent to Gödel algebras, Order 30 (2013), pp. 625–642. http://dx.doi.org/10.1007/s11083-012-9266-0  
  4. [4] M. Abad, J. M. Cornejo and J. P. Díaz Varela, The variety generated by semi-Heyting chains, Soft Computing 15(4) (2010), pp. 721–728. https://doi.org/10.1007/s00500-010-0604-0  
  5. [5] M. Abad, J. M. Cornejo and J. P. Díaz Varela, The variety of semi-Heyting algebras satisfying the equation (0 → 1)*∨(0→ 1)**≈ 1, Reports on Mathematical Logic 46 (2011), pp. 75–90. http://dx.doi.org/10.4467/20842589RM.11.005.0283  
  6. [6] R. Balbes and P.H. Dwinger, Distributive lattices, University of Missouri Press, Columbia, 1974.  
  7. [7] G. Birkhoff, Lattice Theory, First Edition, Colloq. Publ., vol. 25, Providence, 1948.  
  8. [8] G. Birkhoff, Lattice Theory, Third Edition, Colloq. Publ., vol. 25, Providence, 1967.  
  9. [9] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York, 1981.  
  10. [10] D. Castaño and J. M. Cornejo, Gentzen-style sequent calculus for semi-intuitionistic logic, Studia Logica 104(6) (2016), pp. 1245–1265. https://doi.org/10.1007/s11225-016-9675-y  
  11. [11] J. M. Cornejo, Semi-intuitionistic logic, Studia Logica 98(1-2) (2011), pp. 9–25. https://doi.org/10.1007/s11225-011-9321-7  
  12. [12] J. M. Cornejo, The semi-Heyting Brouwer logic, Studia Logica 103(4) (2015), pp. 853–875. https://doi.org/10.1007/s11225-014-9596-6  
  13. [13] J. M. Cornejo and I. D. Viglizzo, On some semi-intuitionistic logics, Studia Logica 103(2) (2015), pp. 303–344. https://doi.org/10.1007/s11225-014-9568-x  
  14. [14] J. M. Cornejo and H. P. Sankappanavar, Implication zroupoids and identities of associative type, Quasigroups and Associated Systems 26 (2018), pp. 13–34.  
  15. [15] J. M. Cornejo and H. J. San Martín, A categorical equivalence between semi-Heyting algebras and centered semi-Nelson algebras, Logic Journal of the IGPL 26(4) (2018), pp. 408–428. https://doi.org/10.1093/jigpal/jzy006  
  16. [16] J. M. Cornejo and I. Viglizzo, Semi-intuitionistic logic with strong negation, Studia Logica 106(2) (2018), pp. 281–293. https://doi.org/10.1007/s11225-017-9737-9  
  17. [17] J. M. Cornejo and I. Viglizzo, Semi-Nelson algebras, Order 35(1) (2018), pp. 23–45. https://doi.org/10.1007/s11083-016-9416-x  
  18. [18] A. Day, Varieties of Heyting algebras, I. and II. Preprints.  
  19. [19] V. Glivenko, Sur quelques points de la logique de Brouwer, Académie Royale de Belgique, Bulletins de la Classe des Sciences 15 (1929), pp. 183–188.  
  20. [20] G. Grätzer, Lattice Theory. First Concepts and Distributive Lattices, Freeman, San Francisco, 1971.  
  21. [21] T. Hect and T. Katrinák, Equational classes of relative Stone algebras, Notre Dame Journal of Formal Logic 13 (1972), pp. 248–254. https://doi.org/10.1305/ndjfl/1093894723  
  22. [22] A. Horn, Logic with truth values in a linearly ordered Heyting algebras, Journal of Symbolic Logic 34 (1969), pp. 395–408. https://doi.org/10.2307/2270905  
  23. [23] M. Hosszú, Some functional equations related with the associative law, Publicationes Mathematicae Debrecen 3 (1954), pp. 205–214.  
  24. [24] T. Katriňák, Remarks on the W. C. Nemitz's paper ``Semi-Boolean lattices'', Notre Dame Journal Formal Logic 11 (1970), pp. 425–430. https://doi.org/10.1305/ndjfl/1093894072  
  25. [25] P. Köhler, Brouwerian semilattices, Transactions of the American Mathematical Society 268 (1981), pp. 103–126. https://doi.org/10.1090/S0002-9947-1981-0628448-3  
  26. [26] M. A. Kazim and M. Naseeruddin, On almost-semigroups, The Aligarh Bulletin of Mathematics 2 (1972), pp. 1–7.  
  27. [27] A. A. Monteiro, Axiomes independents pour les algebres de Brouwer, Revista de la Unión Matemática Argentina y de la Asociación Física Argentina} 17 (1955), pp. 148–160.  
  28. [28] W. Nemitz, Implicative semilattices, Transactions of the American Mathematical Society 117 (1965), pp. 128–142. https://doi.org/10.1090/S0002-9947-1965-0176944-9  
  29. [29] W. Nemitz, Semi-Boolean lattices, Notre Dame Journal Formal Logic 10 (1969), pp. 235–238. https://doi.org/10.1305/ndjfl/1093893707  
  30. [30] D. I. Pushkashu, Para-associative groupoids, Quasigroups and Related Systems 18(2) (2010), pp. 187–194.  
  31. [31] H. Rasiowa and R. Sikorski, The Mathematics of metamathematics, PWN, Warsaw, 1969.  
  32. [32] H. Rasiowa, An algebraic approach to non-classical logics, North-Holland, Amsterdam, 1974.  
  33. [33] H. P. Sankappanavar, Heyting algebras with dual pseudocomplementation, Pacific Journal of Mathematics 117 (1985), pp. 405–415. https://doi.org/10.2140/pjm.1985.117.405  
  34. [34] H. P. Sankappanavar, Pseudocomplemented Okham and De Morgan algebras, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 32 (1986), pp. 385–396. https://doi.org/10.1002/malq.19860322502  
  35. [35] H. P. Sankappanavar, Semi-Heyting algebras, Abstracts of Papers Presented to the American Mathematical Society, January 1987, p.13.  
  36. [36] H. P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 33 (1987), pp. 712–724. https://doi.org/10.1002/malq.19870330610  
  37. [37] H. P. Sankappanavar, Semi-De Morgan algebras, Journal Symbolic Logic 52 (1987), pp. 712–724. https://doi.org/10.2307/2274359  
  38. [38] H. P. Sankappanavar, Semi-Heyting Algebras: An abstraction from Heyting algebras, Actas del IX Congreso Dr. Antonio A.R. Monteiro (2007), pp. 33–66.  
  39. [39] H. P. Sankappanavar, Expansions of semi-Heyting algebras: Discriminator varieties, Studia Logica 98(1-2) (2011), pp. 27–81. https://doi.org/10.1007/s11225-011-9322-6  
  40. [40] S. K. Stein, On the foundations of quasigroups, Transactions of the American Mathematical Society 85 (1957), pp. 228–256. https://doi.org/10.1090/S0002-9947-1957-0094404-6  
  41. [41] M. H. Stone, Topological representations of distributive lattices and Brouwerian logics, Časopis pro Pěstování Matematiky a Fysiky 67 (1937), pp. 1–25.  
  42. [42] A. Suschkewitsch, On a generalization of the associative law, Transactions of the American Mathematical Society 31(1) (1929), pp. 204–214. https://doi.org/10.1090/S0002-9947-1929-1501476-0  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.