Soluzioni elementari causali dell'operatore di Klein—Gordon iterato

Susana Elena Trione

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1972)

  • Volume: 52, Issue: 5, page 607-610
  • ISSN: 0392-7881

Abstract

top
The distributions G α { P ± i 0 , m , n } (formula (1)) share many properties with the Bessel kernel, of which they are "causal" ("anticausal") analogues. In particular (Theorem 1), G α G - 2 k = G α - 2 k , Λ α 𝐂 , Λ k = 0 , 1 , 2 , . The essential tool for the proof of this formula is the multiplication formula (4), namely { m 2 + Q ( y ) i 0 } α { m 2 + Q ( y ) i 0 } β = { m 2 + Q ( y ) i 0 } α + β , which is valid for every α , β 𝐂 . It follows from Theorem (1) that G 2 k { P ± i 0 , m , n } , is, for n 2 , k = 1 , 2 , , a causal (anticausal) elementary solution of the n-dimensional Klein-Gordon operator, iterated k times (Theorem 2). The particular case n = 4 , k = 1 is important in the quantum theory of fields, since G 2 { P ± i 0 , m , 4 } embodies a useful expression of the causal propagator of Feynman. It may be observed that the elementary solutions G 2 k { P ± i 0 , m , n } have the same form for every n 2 . This does not happen for other elementary solutions, whose form depends essentially on the parity of n .

How to cite

top

Trione, Susana Elena. "Soluzioni elementari causali dell'operatore di Klein—Gordon iterato." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 52.5 (1972): 607-610. <http://eudml.org/doc/295664>.

@article{Trione1972,
author = {Trione, Susana Elena},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {ita},
month = {5},
number = {5},
pages = {607-610},
publisher = {Accademia Nazionale dei Lincei},
title = {Soluzioni elementari causali dell'operatore di Klein—Gordon iterato},
url = {http://eudml.org/doc/295664},
volume = {52},
year = {1972},
}

TY - JOUR
AU - Trione, Susana Elena
TI - Soluzioni elementari causali dell'operatore di Klein—Gordon iterato
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1972/5//
PB - Accademia Nazionale dei Lincei
VL - 52
IS - 5
SP - 607
EP - 610
LA - ita
UR - http://eudml.org/doc/295664
ER -

References

top
  1. BATEMAN, MANUSCRIPT, Higher transcendental functions, vol. II. Mc Graw Hill, New York, 1953. MR58756
  2. GELFAND, I. M. e SHILOV, G. E., Generalized functions, vol. I. Academic Press, New York, 1964. MR166596
  3. SCHWARTZ, L., Théorie des distributions, Paris, Hermann, 1966. Zbl0149.09501MR209834
  4. ARONSZAJN, N. e SMITH, K. T., Theory of Bessel potentials, Part I, «Ann. Inst. Fourier, Grenoble», 11, 385-475 (1961). Zbl0102.32401MR143935
  5. BRESTERS, D. W., On distributions connected with quadratic forms, «Siam J. Appl. Math.», 16, 563-581 (1968). Zbl0162.44903MR229030DOI10.1137/0116045
  6. FISHER, B., The generalized function ( x + i 0 ) λ , «Proc. Camb. Phil. Soc.», 68, 707-708, (1970). Zbl0201.16504MR262820DOI10.1017/s0305004100076714
  7. FEYNMAN, R. P., The theory of positrons, «Phys. Rev.», 16, 749-759 (1949). Zbl0037.12406
  8. BOWMAN, J. J. e HARRIS, J. D., Green's distributions and the Cauchy problem for the iterated Klein-Gordon operator, «J. Mathematical Physics», 3, 396-404 (1962). Zbl0114.29902MR149120DOI10.1063/1.1724239

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.