Theory of Bessel potentials. I

Nachman Aronszajn; K. T. Smith

Annales de l'institut Fourier (1961)

  • Volume: 11, page 385-475
  • ISSN: 0373-0956

How to cite


Aronszajn, Nachman, and Smith, K. T.. "Theory of Bessel potentials. I." Annales de l'institut Fourier 11 (1961): 385-475. <>.

author = {Aronszajn, Nachman, Smith, K. T.},
journal = {Annales de l'institut Fourier},
keywords = {functional analysis},
language = {eng},
pages = {385-475},
publisher = {Association des Annales de l'Institut Fourier},
title = {Theory of Bessel potentials. I},
url = {},
volume = {11},
year = {1961},

AU - Aronszajn, Nachman
AU - Smith, K. T.
TI - Theory of Bessel potentials. I
JO - Annales de l'institut Fourier
PY - 1961
PB - Association des Annales de l'Institut Fourier
VL - 11
SP - 385
EP - 475
LA - eng
KW - functional analysis
UR -
ER -


  1. [0] N. ARONSZAJN, Boundary values of functions with finite Dirichlet integral, Conference on Partial Differential equations, 1954, University of Kansas, Lawrence, Kansas. Zbl0068.08201
  2. [1] N. ARONSZAJN and K. T. SMITH, Functional spaces and functional completion, Annales de l'Inst. Fourier, vol. 6, 1955-1956, pp. 125-185. Zbl0071.33003MR18,319c
  3. [2] N. ARONSZAJN and K. T. SMITH, Characterization of positive reproducing kernels, Applications to Green's functions, American Journ. Math., vol. 79, 1957, pp. 611-622. Zbl0079.13603MR19,566f
  4. [3] S. BOCHNER, Vorlesungen über Fouriersche Integrale, Chelsea, New York, 1948. Zbl0006.11001JFM58.0292.01
  5. [4] M. BRELOT, Points irréguliers et transformations continues en théorie du potentiel, Journal de Math. Pures et Appl., vol. 19, 1940. Zbl0024.40301MR3,47bJFM66.0447.01
  6. [4a] L. CARLESON, On the connection between Hausdorff measures and capacity, Arkiv. f. Mat. vol. 36, 1957, pp. 403-406. Zbl0078.09303
  7. [5] H. CARTAN, Sur les fondements de la théorie du potentiel, Bull. Soc. Math. de France, vol. 69, 1941, pp. 71-96. Zbl0026.22703MR7,447iJFM67.0346.03
  8. [6] H. CARTAN, Théorie du potentiel newtonien : énergie, capacité, suites de potentiels, Bull. Soc. Math. de France, vol. 73, 1945, pp. 74-106. Zbl0061.22609MR7,447h
  9. [7] G. CHOQUET, Theory of capacities, Ann. de l'Inst. Fourier, vol. 5, 1953-1954, pp. 131-295. Zbl0064.35101MR18,295g
  10. [7 a] G. CHOQUET and J. DENY, Modèles finis en théorie du potentiel, Journ. d'Analyse Math., vol. 5, 1956-1957, pp. 77-135. Zbl0086.30502MR19,405d
  11. [8] J. DENY, Les potentiels d'énergie finie, Acta Math., vol. 82, 1950, pp. 107-183. Zbl0034.36201MR12,98e
  12. [8 a] J. DENY and J. L. LIONS, Les espaces du type de Beppo Levi, Ann. de l'Inst. Fourier, vol. 5, 1955, pp. 305-370. Zbl0065.09903MR17,646a
  13. [9] A. ERDELYI, W. MAGNUS, F. OBERHETTINGER and F. G. TRICOMI, Tables of Integral Transforms II, New York, McGraw-Hill, 1954. Zbl0055.36401MR16,468c
  14. [10] A. ERDELYI, W. MAGNUS, F. OBERHETTINGER and F. G. TRICOMI, Higher Transcendental Functions II, New York, McGraw-Hill, 1953. Zbl0052.29502MR15,419i
  15. [10 a] P. ERDOS and J. GILLIS, Note on the transfinite diameter, J. Lond. Math. Soc., vol. 12 (1937). Zbl0017.11505JFM63.0191.01
  16. [11] O. FROSTMAN, Potentiels d'équilibre et capacité des ensembles, Thesis, Lund, 1935. Zbl0013.06302JFM61.1262.02
  17. [11 a] B. FUGLEDE, Extremal length and functional completion, Acta Math., vol. 98, 1957, pp. 171-219. Zbl0079.27703MR20 #4187
  18. [12] G. H. HARDY, J. E. LITTLEWOOD et G. POLYA, Inequalities, Cambridge, The University Press, 1934. Zbl0010.10703JFM60.0169.01
  19. [13] M. D. KIRSZBRAUN, Uber die zusammenziehende und Lipschitzsche Transformationen, Fund. Math., vol. 22, 1934. Zbl0009.03904JFM60.0532.03
  20. [13 a] K. KUNUGUI, Étude sur la théorie du potentiel generalisé, Osaka, Math. Journ., vol. 2, 1950, pp. 63-103. Zbl0036.34105MR12,410h
  21. [13 b] O. NIKODYM, Sur une classe de fonctions considérées dans l'étude du problème de Dirichlet, Fund. Math., vol. 21, 1933, pp. 129-150. Zbl0008.15903JFM59.0290.01
  22. [13 c] N. NINOMIYA, Étude sur la théorie du potentiel pris par rapport au noyau symétrique, J. Inst. Polytech. Osaka City Univ., vol. 8, 1957, pp. 147-179. Zbl0082.31601MR21 #776
  23. [13 d] M. OHTSUKA, Capacité des ensembles produits, Nagoya Math. Journ. vol. 12, 1957, pp. 95-130. Zbl0079.12102MR21 #4309
  24. [14] L. SCHWARTZ, Théorie des distributions, I, II. Ac. Sci. Ind., vol. 1091, 1122, Paris, 1950-1951. Zbl0042.11405MR12,31d
  25. [14 a] L. N. SLOBODETZKY, Spaces of S. L. SOBOLEFF of fractional order... (in Russian), Doklady Akad. Nauk. S.S.S.R., 118, 1958, pp. 243-246. Zbl0088.30302
  26. [14 b] L. N. SLOBODETZKY, Évaluations of solutions... (in Russian), Doklady Akad. Nauk S.S.S.R., vol. 120, 1958, pp. 468-471. 
  27. [15] K. T. SMITH, Mean values and continuity of Riesz potentials, Comm. Pure and Applied Math., vol. 9, 1956, pp. 569-576. Zbl0072.31405MR18,389b
  28. [15 a] K. T. SMITH, Functional spaces, functional completion and differential problems, Conference on Partial Differential Equations, University of Kansas, 1954, pp. 59-75. Zbl0067.34501
  29. [15 b] S. L. SOBOLEFF, Sur un théorème de l'analyse fonctionnelle, C. R. Ac. Sci. U.R.S.S., vol. 29, 1938, pp. 5-9. Zbl0022.14803JFM64.0208.03
  30. [16] G. N. WATSON, A Treatise on the Theory of Bessel Functions, Cambridge, The University Press, 1922. Zbl48.0412.02JFM50.0264.01

Citations in EuDML Documents

  1. Robert S. Strichartz, Fubini-type theorems
  2. Susana Elena Trione, Soluzioni elementari causali dell'operatore di Klein—Gordon iterato
  3. Jun Masamune, Toshihiro Uemura, Conservation property of symmetric jump processes
  4. Jacques-Louis Lions, Sur les théorèmes d'interpolation
  5. Nachman Aronszajn, Szeptycki P., On spaces of potentials connected with L p classes
  6. Nachman Aronszajn, R. D. Brown, R. S. Butcher, Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle
  7. Yves Rakotondratsimba, A two-weight inequality for the Bessel potential operator
  8. R. J. Nessel, A. Pawelke, Über Favardklassen von Summationsprozessen mehrdimensionaler Fourierreihen
  9. Robert S. Strichartz, Invariant pseudo-differential operators on a Lie group
  10. Robert Adams, Nachman Aronszajn, M. S. Hanna, Theory of Bessel potentials. III : potentials on regular manifolds

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.