An intersection theorem in Banach spaces

Alfonso Vignoli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1970)

  • Volume: 49, Issue: 3-4, page 180-183
  • ISSN: 0392-7881

Abstract

top
Let the Banach space X = A B be the direct sum of two subspaces A , B X , and let f : A X , g : B X be continuous mappings. A condition is given on f and g in order to ensure that the intersection f ( A ) g ( B ) is not empty.

How to cite

top

Vignoli, Alfonso. "An intersection theorem in Banach spaces." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 49.3-4 (1970): 180-183. <http://eudml.org/doc/296032>.

@article{Vignoli1970,
abstract = {Let the Banach space $X = A \oplus B$ be the direct sum of two subspaces $A, B \subset X$, and let $f : A \to X$, $g : B \to X$ be continuous mappings. A condition is given on $f$ and $g$ in order to ensure that the intersection $f(A) \cap g(B)$ is not empty.},
author = {Vignoli, Alfonso},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {9},
number = {3-4},
pages = {180-183},
publisher = {Accademia Nazionale dei Lincei},
title = {An intersection theorem in Banach spaces},
url = {http://eudml.org/doc/296032},
volume = {49},
year = {1970},
}

TY - JOUR
AU - Vignoli, Alfonso
TI - An intersection theorem in Banach spaces
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1970/9//
PB - Accademia Nazionale dei Lincei
VL - 49
IS - 3-4
SP - 180
EP - 183
AB - Let the Banach space $X = A \oplus B$ be the direct sum of two subspaces $A, B \subset X$, and let $f : A \to X$, $g : B \to X$ be continuous mappings. A condition is given on $f$ and $g$ in order to ensure that the intersection $f(A) \cap g(B)$ is not empty.
LA - eng
UR - http://eudml.org/doc/296032
ER -

References

top
  1. GRANAS, A., On a geometrical theorem in Banach spaces, «Bull. Acad. Pol. Sci. Cl. III», 5, N.9, 873-877 (in Russian), (1957). Zbl0078.11702MR91433
  2. KURATOWSKI, C., Topologie, «Monografie Matematiczne», Tom 20, Warszawa1958. 
  3. DARBO, G., Punti uniti in trasformazioni a codominio non compatto, «Rend. Sem. Mat. Padova», 24, 84-92 (1955). Zbl0064.35704MR70164
  4. FURI, M. and VIGNOLI, A., A fixed point theorem in complete metric spaces, «Boll. Un. Mat. It.», serie IV, N. 4-5, 505-509 (1969). Zbl0183.51404MR256378
  5. GRANAS, A., On a class of nonlinear mappings in Banach spaces, «Bull. Acad. Pol. Sci. Cl. III», 5, N.9, 867-870 (1957). Zbl0078.11701MR91432
  6. VIGNOLI, A., On quasibounded mappings and nonlinear functional equations (to appear). Zbl0254.47089MR303379
  7. PETRYSHYN, W. V., Further remarks on nonlinear P-compact operators in Banach space, «J. Math. Anal. Appl.», 16, N.2, 243-253 (1966). Zbl0149.10603MR198299DOI10.1016/0022-247X(66)90169-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.