Symbolika matematyczna związana z pojęciem funkcji

Izabela Jóźwik; Małgorzata Terepeta

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2016)

  • Volume: 8, page 87-99
  • ISSN: 2080-9751

Abstract

top
Mathematical texts are characterised by the occurrence of specificsymbols. They may be letters (as applied, for example, by Euclid), numbersymbols or graphic signs with context-independent meaning. Mathematicalsymbols store knowledge of previous generations that provides frameworkswith which to examine history of mathematical problems. In this paper, wedeal with symbols related to the concept of function and related concepts likelimit, and some other set theoretical or logical concepts. We focus on symbolsthat have survived unchanged into the present day and are commonlyused. In part, we rely on the well-known book by Florian Cajori, “Historyof Mathematical Notations”, first published in 1928-1929. Since mathematicalnotation is still growing, we also present symbols emerged after [Cajori1928-1929].

How to cite

top

Izabela Jóźwik, and Małgorzata Terepeta. "Symbolika matematyczna związana z pojęciem funkcji." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 8 (2016): 87-99. <http://eudml.org/doc/296324>.

@article{IzabelaJóźwik2016,
abstract = {Mathematical texts are characterised by the occurrence of specificsymbols. They may be letters (as applied, for example, by Euclid), numbersymbols or graphic signs with context-independent meaning. Mathematicalsymbols store knowledge of previous generations that provides frameworkswith which to examine history of mathematical problems. In this paper, wedeal with symbols related to the concept of function and related concepts likelimit, and some other set theoretical or logical concepts. We focus on symbolsthat have survived unchanged into the present day and are commonlyused. In part, we rely on the well-known book by Florian Cajori, “Historyof Mathematical Notations”, first published in 1928-1929. Since mathematicalnotation is still growing, we also present symbols emerged after [Cajori1928-1929].},
author = {Izabela Jóźwik, Małgorzata Terepeta},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {mathematical symbol; function; limit; q.e.d.},
language = {pol},
pages = {87-99},
title = {Symbolika matematyczna związana z pojęciem funkcji},
url = {http://eudml.org/doc/296324},
volume = {8},
year = {2016},
}

TY - JOUR
AU - Izabela Jóźwik
AU - Małgorzata Terepeta
TI - Symbolika matematyczna związana z pojęciem funkcji
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2016
VL - 8
SP - 87
EP - 99
AB - Mathematical texts are characterised by the occurrence of specificsymbols. They may be letters (as applied, for example, by Euclid), numbersymbols or graphic signs with context-independent meaning. Mathematicalsymbols store knowledge of previous generations that provides frameworkswith which to examine history of mathematical problems. In this paper, wedeal with symbols related to the concept of function and related concepts likelimit, and some other set theoretical or logical concepts. We focus on symbolsthat have survived unchanged into the present day and are commonlyused. In part, we rely on the well-known book by Florian Cajori, “Historyof Mathematical Notations”, first published in 1928-1929. Since mathematicalnotation is still growing, we also present symbols emerged after [Cajori1928-1929].
LA - pol
KW - mathematical symbol; function; limit; q.e.d.
UR - http://eudml.org/doc/296324
ER -

References

top
  1. Bascelli, T., Błaszczyk, P., Borovik, A., Kanovei, V., Katz, K. U., Katz, M. G., Kutateladze, S. S., McGaffey, T., Schaps, D. M., Sherry, D.: 2016, Cauchy’s infinitesimals, his sum theorem and fundational paradigms, HOPOS 6(1), 117–147. 
  2. Becker, A.: 1933, Die Aristotelische Theorie der Möglichkeitsschlüsse Eine Logisch-Philologische Untersuchung der Kapitel 13-22 von Aristoteles’ Analytica Priora I, Junker Und Dünnhaupt, Berlin. 
  3. Bernoulli, J.: 1718, Remarques Sur ce qu’on a donné jusqu’icide de solutions des Problémes sur les Isoperimétres; avec une nouvelle methode courte & facile de les resoudre sans calcul, laquelle s’étend aussi á d’autres Problémes qui ont raport á ceux-lá, Mémoires de l’Academie Royale des Sciences, Paris. 
  4. Błaszczyk, P., Mrówka, K.: 2013, Euklides Elementy. Ksiegi V-VI teoria proporcji i podobienstwa, Copernicus Center Press, Kraków. 
  5. Błaszczyk, P., Mrówka, K.: 2015, Kartezjusz, Geometria, Wydawnictwo Universitas, Kraków. 
  6. Bourbaki, N.: 1939, Fonctions d’une variable réelle (Théorie élémentaire), Archives Bourbaki, Ch. I et II (état 2). Cajori, F.: 1993, A History of Mathematical Notations. Two Volumes Bound as One. Volume I: Notations in Elementary Mathematics. Volume II: Notations Mainly in Higher Mathematics, Dover, New York, Reprint of works originally published in 1928 and 1929 by The Open Court Publishing Company, Chicago. 
  7. Cantor, G.: 1877, Ein Beitrag zur Mannifaltigkeitslehre, Journal für die reine und angewandte Mathematik 84, 242–258. 
  8. Cantor, G.: 1895, Beiträge zur Begründung der transfiniten Mengenlehre (Contributions to the Foundation of Transfinite Set Theory), Mathematische Annalen 46. 
  9. Cauchy, A. L.: 1821, Cours d’analyse de l’École royale polytechnique, De L’imprimerie Royale, Paris. 
  10. Cauchy, A. L.: 1853, Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réele ou imaginaire, entre des limites données, Oeuvres complètes, Vol. 12, Series 1, Gauthier-Villars, Paris. 
  11. de l’Hôpital, G.: 1696, Analyse des infiniment petits pour l’intelligence des lignes courbes, Paris. 
  12. Dedekind, R.: 1887, Was sind und was sollen die Zahlen?, Verlag Friedrich Vieweg & Sohn, Braunschweig. 
  13. Dirichlet, P. G. L.: 1829, Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données, Journal für die reine und angewandte Mathematik 4, 157–169. 
  14. Duda, R.: 2015, Matematyka a dzieje mysli. http://jaszczur.czn.uj.edu.pl/course/view.php?id=150. 
  15. Euler, L.: 1740, Infinitis curvis eiusdem generis, Commentarii Academiae Scientiarum Petropolitanae ad annos 1734-1735 VII, 184–200. 
  16. Fitzpatrick, R.: 2008, Euclid’s elements of geometry. http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf. 
  17. Gentzen, G.: 1935, Untersuchungen über das logische Schließen, Mathematische Zeitschrift 39, 176–210. 
  18. Halmos, P. R.: 1974, Measure Theory, Springer-Verlag, New York. 
  19. Halmos, P. R.: 1985, I Want to be a Mathematician: An Automathography, Springer-Verlag, New York. 
  20. Heyting, A.: 1930, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der preußischen Akademie der Wissenschaften, phys.-math. Klasse, 42–65. 
  21. Hurewicz, W.: 1940, On duality theorems, Bulletin of the American Mathematical Society 47, 562–563. 
  22. Kelley, J. L.: 1991, General topology, Graduate Texts in Mathematics 27, reprint of the 1955 ed. published by Van Nostrand, Springer-Verlag New York Berlin Heidelberg, 
  23. New York. 
  24. Kleiner, I.: 1989, Evolution of the function concept: A brief survey, The College Mathematics Journal 20(4), 282–300. 
  25. Kline, M.: 1972, Mathematical Thought From Ancient To Modern Times, 3 Volumes in a Single Book, Oxford University Press, New York. 
  26. Leathem, J. G.: 1905, Volume and Surface Integrals Used in Physics, University Press, Cambridge. 
  27. Leibniz, G.: 1694, Nova calculi differentialis applicatio et usus ad multiplicem linearum constructionem, ex data tangentium conditione, Acta Eruditorum 13, 311–316. 
  28. l’Huilier, S. A. J.: 1786, Exposition él ´ mentaire des principes des calculs suprieurs, Decker, Berlin. 
  29. Mc Lane, S.: 1971, Categories for the working mathematician, Springer, New York. 
  30. Peano, G.: 1888, Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann, Fratelli Bocca Editori, Torino. 
  31. Peano, G.: 1901, Formulaire de mathématiques, Vol. 6, Révue des Mathématique, Torino. 
  32. Pringsheim, A.: 1916, Vorlesungen über Zahlen - und Funktionenlehre, Teubner, Leipzig. 
  33. Russell, B.: 1906, The theory of implication, American Journal of Mathematics 28(2), 159–202. 
  34. Russell, B.: 1908, Mathematical logic as based on the theory of types, American Journal of Mathematics 30(3), 222–262. 
  35. Schröder, E.: 1890, Vorlesungen über die Algebra der Logik, Vol. 1, Teubner, Leipzig. 
  36. Weierstrass, K.: 1894, Matchematiche Werke, Band I, Mayer & Müller, Berlin. 
  37. Whitehead, A. N., Russell, B.: 1910, Principia Mathematica, vol. 1, Cambridge University Press, Cambridge. 
  38. Youschkevitch, A. P.: 1976, The concept of function up to the middle of the 19th century, Archive for History of Exact Sciences 27.IX 16(1), 37–85. 
  39. Zermelo, E.: 1908, Untersuchungen über die Grundlagen der Mengenlehre, Mathematische Annalen 65, 261–281. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.