Tożsamości dla uogólnionych symboli Newtona

Jan Górowski; Adam Łomnicki

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2010)

  • Volume: 3, page 67-77
  • ISSN: 2080-9751

Abstract

top
--

How to cite

top

Jan Górowski, and Adam Łomnicki. "Tożsamości dla uogólnionych symboli Newtona." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 3 (2010): 67-77. <http://eudml.org/doc/296362>.

@article{JanGórowski2010,
abstract = {--},
author = {Jan Górowski, Adam Łomnicki},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
language = {pol},
pages = {67-77},
title = {Tożsamości dla uogólnionych symboli Newtona},
url = {http://eudml.org/doc/296362},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Jan Górowski
AU - Adam Łomnicki
TI - Tożsamości dla uogólnionych symboli Newtona
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2010
VL - 3
SP - 67
EP - 77
AB - --
LA - pol
UR - http://eudml.org/doc/296362
ER -

References

top
  1. Belbachir, H., Bouroubi, S., Khelladi, A.: 2008, Connection between ordinary multinominals, fibonacci numbers, bell polynominals and discrete uniform distribution, Annales Math. et Informaticae 35, 21-30. 
  2.  
  3. Bollinger, R. C.: 1986, A note on Pascal T-triangles multinominal coefficients and Pascal Pyramids, The Fibonacci Quartely 24(2), 140-144. 
  4.  
  5. Comtet, L.: 1974, Advanced combinatorics, D. Reidel Publishing Company, Dordrecht - Holand, Boston - USA. 
  6.  
  7. Graham, R. L., Knuth, D. E., Patashnik, O.: 2002, Matematyka konkretna, PWN, Warszawa. 
  8.  
  9. Hoggatt, V. E., Bicknel, M.: 1973, Generalized Fibonacci polynominals, The Fibonacci Quartely 11, 457-465. 
  10.  
  11. Kallos, G.: 2006, A generalization of pascal triangles using powers of base numbers, Annales Math. Blaise Pascal 13(1), 1-15. 
  12.  
  13. Koshy, T.: 2001, Fibonacci and Lucas numbers with applications, Iohn Wiley & Sons, Inc. 
  14.  
  15. Philippon, A. N., Georghin, C., Philippon, G. N.: 1983, Fibonacci polynominals of order k, multinominal expansions and probability, Internat. J. Math. Science 6(3), 545-550. 
  16.  
  17. Schork, M.: 2008, The r-generalized Fibonacci numbers and polynominals coefficients, Internat. J. Math. Science 3(24), 1157-1163. 
  18.  
  19. Walser, H.: 2000, The Pascal pyramid, The College Math. J. 31(5), 383-392. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.