Wielomiany Fibonacciego stopnia k

Jan Górowski; Adam Łomnicki

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2014)

  • Volume: 6, page 95-100
  • ISSN: 2080-9751

Abstract

top
In this paper, we give formulas determining the Fibonacci polynomials of order k using the so-called generalized Newton symbols, i.e., the coefficients in the expansion of (1+z +z^2 +. . .+z^{k−1})n with respect to the powers of z.

How to cite

top

Jan Górowski, and Adam Łomnicki. "Wielomiany Fibonacciego stopnia k." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 6 (2014): 95-100. <http://eudml.org/doc/296375>.

@article{JanGórowski2014,
abstract = {In this paper, we give formulas determining the Fibonacci polynomials of order k using the so-called generalized Newton symbols, i.e., the coefficients in the expansion of (1+z +z^2 +. . .+z^\{k−1\})n with respect to the powers of z.},
author = {Jan Górowski, Adam Łomnicki},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {Fibonacci polynominals; Fibonacci numbers; Pell numbers; polynomial coefficients},
language = {pol},
pages = {95-100},
title = {Wielomiany Fibonacciego stopnia k},
url = {http://eudml.org/doc/296375},
volume = {6},
year = {2014},
}

TY - JOUR
AU - Jan Górowski
AU - Adam Łomnicki
TI - Wielomiany Fibonacciego stopnia k
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2014
VL - 6
SP - 95
EP - 100
AB - In this paper, we give formulas determining the Fibonacci polynomials of order k using the so-called generalized Newton symbols, i.e., the coefficients in the expansion of (1+z +z^2 +. . .+z^{k−1})n with respect to the powers of z.
LA - pol
KW - Fibonacci polynominals; Fibonacci numbers; Pell numbers; polynomial coefficients
UR - http://eudml.org/doc/296375
ER -

References

top
  1. André, D.: 1876, Mémoire sur les combinaisons régulières et leurs applications, Ann. Sci. École Norm. Sup. 5(2), 155-1928. 
  2. Belbachir, H., Bouroubi, S., Khelladi, A.: 2008, Connection between ordinary multinominals, Fibonacci numbers, Bell polynominals and discrete uniform distribution, Annales Math. et Informaticae 35, 21-30. 
  3. Górowski, J., Łomnicki, A.: 2010, Tożsamości dla uogólnionych symboli Newtona, Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia III, 67-77. 
  4. Hoggatt, V. E., Bicknell, M.: 1973, Generalized Fibonacci polynomials, Fibonacci Qartelly 11, 457-465. 
  5. Koshy, T.: 2001, Fibonacci and Lucas numbers with applications, Iohn Wiley & Sons, Inc. 
  6. Philippou, A. N., Georghiou, C., Philippou, G. N.: 1983, Fibonacci polynomials of order k, multinomial expansions and probability, Internat. J. Math. Math. Sci. 6(3), 545-550. 
  7. Schork, M.: 2008, The r-generalized Fibonacci numbers and polynominals coefficients, Internat. J. Math. Science 3(21-24), 1157-1163. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.