Wokół liczb i szeregów harmonicznych

Damian Wiśniewski

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia (2015)

  • Volume: 7, page 99-109
  • ISSN: 2080-9751

Abstract

top
The harmonic series is one of the most celebrated infinite series ofmathematics. From a pedagogical point of view, the harmonic series providesa wealth of opportunities. Applications such as Gabriel’s wedding cake andEuler’s proof of the divergence of prime numbers can lead to some verynice discussions. The main idea of this article is to survey some of unusual,insightful and inspiring divergence proofs. First of all, this article is addressedat first-year calculus students.

How to cite

top

Damian Wiśniewski. "Wokół liczb i szeregów harmonicznych." Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 7 (2015): 99-109. <http://eudml.org/doc/296403>.

@article{DamianWiśniewski2015,
abstract = {The harmonic series is one of the most celebrated infinite series ofmathematics. From a pedagogical point of view, the harmonic series providesa wealth of opportunities. Applications such as Gabriel’s wedding cake andEuler’s proof of the divergence of prime numbers can lead to some verynice discussions. The main idea of this article is to survey some of unusual,insightful and inspiring divergence proofs. First of all, this article is addressedat first-year calculus students.},
author = {Damian Wiśniewski},
journal = {Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia},
keywords = {harmonic numbers; harmonic series; divergence},
language = {pol},
pages = {99-109},
title = {Wokół liczb i szeregów harmonicznych},
url = {http://eudml.org/doc/296403},
volume = {7},
year = {2015},
}

TY - JOUR
AU - Damian Wiśniewski
TI - Wokół liczb i szeregów harmonicznych
JO - Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
PY - 2015
VL - 7
SP - 99
EP - 109
AB - The harmonic series is one of the most celebrated infinite series ofmathematics. From a pedagogical point of view, the harmonic series providesa wealth of opportunities. Applications such as Gabriel’s wedding cake andEuler’s proof of the divergence of prime numbers can lead to some verynice discussions. The main idea of this article is to survey some of unusual,insightful and inspiring divergence proofs. First of all, this article is addressedat first-year calculus students.
LA - pol
KW - harmonic numbers; harmonic series; divergence
UR - http://eudml.org/doc/296403
ER -

References

top
  1. Cesaro, E.: 1885, Sur la serie harmonique, Nouvelles Annales de Mathméatiques 4. 
  2. Chen, C.-P., Qi, F.: 2008, The best bounds of the nth harmonic number, The Global Journal of Applied Mathematics & Mathematical Sciences 1(1), 41-49. 
  3. Chen, H., Kennedy, C.: 2012, Harmonic series meets Fibonacci sequence, The College Mathematics Journal 43, 237-243. 
  4. DeTemple, D., Wang, S.-H.: 1991, Half-integer approximations for the partial sums of the harmonic series, J. Math. Anal. Appl. 160. 
  5. Dunham, W.: 1990, Journey Through Genius, John Wiley & Sons. 
  6. Euler, L.: 1734, De progressionibus harmonicis observationes, Commentarii Academiae Scientiarum Imperialis Petropolitanae 19, 150-161. 
  7. Fichtenholz, G. M.: 1995, Rachunek rózniczkowy i całkowy, t. II, PWN, Warszawa. 
  8. Fleron, J. F.: 1999, Gabriel’s wedding cake, College Mathematics Journal, 35-38. 
  9. Kaczynski, A.: 2005, Podstawy analizy matematycznej. Rachunek całkowy. Szeregi, Oficyna Wydawnicza Politechniki Warszawskiej. 
  10. Kifowit, S., Stamps, T.: 2006a, The harmonic series diverges again and again, The AMATYC Review 27, 31-43. 
  11. Kifowit, S., Stamps, T.: 2006b, Serious About the Harmonic Series II, Prairie State College . 
  12. Lodge, A.: 1904, An approximate expression for the value of 1+1/2 +1/3 +...+ 1/r , Messenger of Mathematics 30. 
  13. Patashnik, O., Graham, R., Knuth, D.: 2001, Matematyka konkretna, PWN, Warszawa, 304-307. 
  14. Sharp, R.: 1954, Problem 52: Overhanging dominoes, Pi Mu Epsilon Journal 1, 411-412. 
  15. Sierpinski, W.: 1950, Teoria liczb, Monografie Matematyczne 19, Instytut Matematyczny Polskiej Akademii Nauk, Warszawa - Wrocław. 
  16. Sinha, P.: 2013, An easy proof of the divergence of the harmonic series sum, American Mathematical Monthly 120, 354. 
  17. Toth, L., Mare, S.: 1991, Problem E 3432, Amer. Math. Monthly 98. 
  18. Villarino, M. B.: 2004, Ramanujan’s Approximation to the n th Partial Sum of the Harmonic Series, Depto. de Matematica, Universidad de Costa Rica, 2-6. 
  19. Villarino, M. B.: 2007, Sharp Bounds for the Harmonic Numbers, Depto. de Matematica, Universidad de Costa Rica. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.