Free boundary minimal surfaces: a survey of recent results
Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche (2019)
- Volume: 86, Issue: 1, page 103-121
- ISSN: 0370-3568
Access Full Article
topAbstract
topHow to cite
topCarlotto, Alessandro. "Free boundary minimal surfaces: a survey of recent results." Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche 86.1 (2019): 103-121. <http://eudml.org/doc/296413>.
@article{Carlotto2019,
abstract = {We present a wide-spectrum overview of some recent developments in the theory of free boundary minimal surfaces, with special emphasis on the problem of compactness under mild curvature conditions on the ambient manifold.},
author = {Carlotto, Alessandro},
journal = {Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche},
keywords = {free boundary minimal surfaces; Steklov eigenvalues; Morse index},
language = {eng},
month = {12},
number = {1},
pages = {103-121},
publisher = {Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini},
title = {Free boundary minimal surfaces: a survey of recent results},
url = {http://eudml.org/doc/296413},
volume = {86},
year = {2019},
}
TY - JOUR
AU - Carlotto, Alessandro
TI - Free boundary minimal surfaces: a survey of recent results
JO - Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche
DA - 2019/12//
PB - Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini
VL - 86
IS - 1
SP - 103
EP - 121
AB - We present a wide-spectrum overview of some recent developments in the theory of free boundary minimal surfaces, with special emphasis on the problem of compactness under mild curvature conditions on the ambient manifold.
LA - eng
KW - free boundary minimal surfaces; Steklov eigenvalues; Morse index
UR - http://eudml.org/doc/296413
ER -
References
top- Aiex, N., Hong, Index, H.estimates for surfaces with constant mean curvature in 3-dimensional manifolds, preprint (arXiv: 1901.00944). Zbl07294622MR4176856DOI10.1007/s00526-020-01855-w
- Aché, A., Maximo, D., Wu, H., Metrics with nonnegative Ricci curvature on convex three-manifolds, Geom. Topol.20 (2016), no. 5, 2905-2922. Zbl1350.53049MR3556351DOI10.2140/gt.2016.20.2905
- Almgren, F., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277-292. Zbl0146.11905MR200816DOI10.2307/1970520
- Ambrozio, L., Buzano, R., Carlotto, A., Sharp, B., Geometric convergence results for closed minimal surfaces via bubbling analysis, preprint (arXiv: 1803.04956). Zbl1426.53013
- Ambrozio, L., Buzano, R., Carlotto, A., Sharp, B., Bubbling analysis and geometric convergence results for free boundary minimal surfaces, J. Éc. polytech. Math.6 (2019), 621-664. Zbl1426.53013MR4014631DOI10.5802/jep.102
- Ambrozio, L., Carlotto, A., Sharp, B., Compactness of the space of minimal hypersurfaces with bounded volume and p-th Jacobi eigenvalue, J. Geom. Anal.26 (2016), no. 4, 2591-2601. Zbl1354.53069MR3544933DOI10.1007/s12220-015-9640-4
- Ambrozio, L., Carlotto, A., Sharp, B., Compactness analysis for free boundary minimal hypersurfaces, Calc. Var. PDE57 (2018), no. 1, 1-39. Zbl1414.53008MR3740402DOI10.1007/s00526-017-1281-y
- Ambrozio, L., Carlotto, A., Sharp, B., Comparing the Morse index and the first Betti number of minimal hypersurfaces, J. Differential Geom., 108 (2018), no. 3, 379-410. Zbl1385.53051MR3770846DOI10.4310/jdg/1519959621
- Ambrozio, L., Carlotto, A., Sharp, B., Index estimates for free boundary minimal hypersurfaces, Math. Ann., 370 (2018), no. 3-4, pages 1063-1078. Zbl1391.53007MR3770163DOI10.1007/s00208-017-1549-8
- Brendle, S., Embedded minimal tori in S3 and the Lawson conjecture, Acta Math.211 (2013), no. 2, 177-190. Zbl1305.53061MR3143888DOI10.1007/s11511-013-0101-2
- Buzano, R., Sharp, B., Qualitative and quantitative estimates for minimal hypersurfaces with bounded index and area, Trans. Amer. Math. Soc., 370 (2018), 4373-4399. Zbl1390.53008MR3811532DOI10.1090/tran/7168
- Caffarelli, L., Jerison, D., Kenig, C., Global energy minimizers for free boundary problems and full regularity in three dimensions. Noncompact problems at the intersection of geometry, analysis, and topology, 83-97, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004. Zbl1330.35545MR2082392DOI10.1090/conm/350/06339
- Calabi, E., Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry1 (1967), 111-125. Zbl0171.20504MR233294
- Cavalcante, M., de Oliveira, D., Index estimates for free boundary constant mean curvature surfaces, preprint (arXiv: 1803.05995). MR4077688DOI10.2140/pjm.2020.305.153
- Cheng, S. Y. and Tysk, J., Schrödinger operators and index bounds for minimal submanifolds, Rocky Mountain J. Math.24 (1994), no. 3, 977-996. Zbl0818.53075MR1307586DOI10.1216/rmjm/1181072383
- Chen, J., Fraser, A., Pang, C., Minimal immersions of compact bordered Riemann surfaces with free boundary, Trans. Amer. Math. Soc., 367 (2014), no. 4, 2487-2507. Zbl1308.58007MR3301871DOI10.1090/S0002-9947-2014-05990-4
- Chodosh, O., Ketover, D., Maximo, D., Minimal surfaces with bounded index, Invent. Math.209 (2017), no. 3, 617-664. Zbl1378.53072MR3681392DOI10.1007/s00222-017-0717-5
- Chodosh, O., Maximo, D., On the topology and index of minimal surfaces, J. Differential Geom.104 (2016), no. 3, 399-418. Zbl1357.53016MR3568626
- Choi, H., Schoen, R., The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math.81 (1985), no. 3, 387-394. Zbl0577.53044MR807063DOI10.1007/BF01388577
- Choi, H., Wang, A., A first eigenvalue estimate for minimal hypersurfaces, J. Differential Geom.18 (1983), no. 3, 559-562. Zbl0523.53055MR723817
- Colding, T., De Lellis, C., Singular limit laminations, Morse index, and positive scalar curvature, Topology44 (2005), no. 1, 25-45. Zbl1096.53037MR2103999DOI10.1016/j.top.2004.01.007
- Colding, T., Minicozzi, W., A course in minimal surfaces, Graduate Studies in Mathematics, 121. American Mathematical Society, Providence, RI, 2011. xii+313 pp. Zbl1242.53007MR2780140DOI10.1090/gsm/121
- Courant, R., The existence of minimal surfaces of given topological structure under prescribed boundary conditions, Acta Math.72 (1940), 51-98. Zbl0023.39901MR2478DOI10.1007/BF02546328
- Courant, R., Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. Appendix by M. Schiffer, Interscience Publishers, Inc., New York, N.Y., 1950. xiii+330 pp. MR36317
- De Lellis, C., Ramic, J., Min-max theory for minimal hypersurfaces with boundary, preprint (arXiv:1611.00926). Zbl1408.53079MR3893761
- Devyver, B., Index of the critical catenoid, preprint (arXiv: 1609.02315). Zbl1412.53015MR3928806DOI10.1007/s10711-018-0353-2
- M. do Carmo, Peng, C. K., Stable complete minimal surfaces in are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 903-906. Zbl0442.53013MR546314DOI10.1090/S0273-0979-1979-14689-5
- Ejiri, N. and Micallef, M., Comparison between second variation of area and second variation of energy of a minimal surface, Adv. Calc. Var.1 (2008), no. 3, 223-239. Zbl1163.58006MR2458236DOI10.1515/ACV.2008.009
- Folha, A., Pacard, F., Zolotareva, T., Free boundary minimal surfaces in the unit 3-ball, Manuscripta Math.154 (2017), no. 3-4, 359-409. Zbl1381.35040MR3713919DOI10.1007/s00229-017-0924-9
- Fraser, A., On the free boundary variational problem for minimal disks, Comm. Pure Appl. Math.53 (2000), no. 8, 931-971. Zbl1039.58013MR1755947DOI10.1002/1097-0312(200008)53:8<931::AID-CPA1>3.3.CO;2-0
- Fraser, A., Index estimates for minimal surfaces and k-convexity, Proc. Amer. Math. Soc.135 (2007), no. 11, 3733-3744. Zbl1127.58007MR2336590DOI10.1090/S0002-9939-07-08894-6
- Fraser, A., Li, M., Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary, J. Differential Geom.96 (2014), no. 2 , 183-200. Zbl1295.53062MR3178438
- Fraser, A., Schoen, R., The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math.226 (2011), no. 5, 4011-4030. Zbl1215.53052MR2770439DOI10.1016/j.aim.2010.11.007
- Fraser, A., Schoen, R., Minimal surfaces and eigenvalue problems. Geometric analysis, mathematical relativity, and nonlinear partial differential equations, 105-121, Contemp. Math.599, Amer. Math. Soc., Providence, RI, 2013. Zbl1321.35118MR3202476DOI10.1090/conm/599/11927
- Fraser, A., Schoen, R., Uniqueness theorems for free boundary minimal disks in space forms, Int. Math. Res. Not. IMRN2015, no. 17, 8268-8274. Zbl1325.53076MR3404014DOI10.1093/imrn/rnu192
- Fraser, A., Schoen, R., Sharp eigenvalue bounds and minimal surfaces in the ball, Invent. Math.203 (2016), no. 3, 823-890. Zbl1337.35099MR3461367DOI10.1007/s00222-015-0604-x
- Freidin, B., Gulian, M., McGrath, P., Free boundary minimal surfaces in the unit ball with low cohomgeneity, Proc. Amer. Math. Soc.145 (2017), no. 4, 1671-1683. Zbl1360.49034MR3601558DOI10.1090/proc/13424
- Grüter, M., Jost, J., On embedded minimal disks in convex bodies, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986), no. 5, 345-390. Zbl0617.49017MR868522
- Guang, Q., Zhou, X., Compactness and generic finiteness for free boundary minimal hypersurfaces, preprint (arXiv:1803.01509). Zbl07326754MR231707DOI10.1002/malq.19680141304
- Hoffman, D., Meeks, W. H., The strong halfspace theorem for minimal surfaces, Invent. Math.101 (1990), no. 2, 373-377. Zbl0722.53054MR1062966DOI10.1007/BF01231506
- Hsiang, W.-Y., Minimal cones and the spherical Bernstein problem. I, Ann. of Math. (2) 118 (1983), no. 1, 61-73. Zbl0522.53051MR707161DOI10.2307/2006954
- Hsiang, W.-Y., Minimal cones and the spherical Bernstein problem. II, Invent. Math.74 (1983), no. 3, 351-369. Zbl0532.53045MR724010DOI10.1007/BF01394241
- Kapouleas, N., Li, M.Free boundary minimal surfaces in the unit three-ball via desingularization of the critical catenoid and equatorial disk, preprint (arXiv: 1709.08556).
- Kapouleas, N., Wygul, D., Free-boundary minimal surfaces with connected boundary in the 3-ball by tripling the equatorial disc, preprint (arXiv: 1711.00818).
- Irie, K., Marques, F. C., Neves, A., Density of minimal hypersurfaces for generic metrics, Ann. Math.187 (2018), no. 3, 963-972. Zbl1387.53083MR3779962DOI10.4007/annals.2018.187.3.8
- Jorge, L., Meeks, W. H., The topology of complete minimal surfaces of finite total Gaussian curvature, Topology22 (1983), no. 2, 203-221. Zbl0517.53008MR683761DOI10.1016/0040-9383(83)90032-0
- Jost, J., Existence results for embedded minimal surfaces of controlled topological type. I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 1, 15-50. Zbl0619.49019MR863634
- Jost, J., Existence results for embedded minimal surfaces of controlled topological type. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 3, 401-426. Zbl0669.49024MR881099
- Jost, J., Existence results for embedded minimal surfaces of controlled topological type. III, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 1, 165-167. Zbl0681.49039MR937541
- Ketover, D., Free boundary minimal surfaces of unbounded genus, preprint (arXiv:1612.08691). Zbl07088294
- Li, M., A general existence theorem for embedded minimal surfaces with free boundary, Comm. Pure Appl. Math.68 (2015), no. 2, 286-331. Zbl1321.53074MR3298664DOI10.1002/cpa.21513
- Li, M., Zhou, X., Min-max theory for free boundary minimal hypersurfaces I - regularity theory, preprint (arXiv:1611.02612).
- Lima, V., Bounds for the Morse index of free boundary minimal surfaces, preprint (arXiv: 1710.10971).
- Liokumovich, Y., Marques, F. C., Neves, A., Weyl law for the volume spectrum, Ann. Math.187 (2018), no. 3, 933-962. Zbl1390.53034MR3779961DOI10.4007/annals.2018.187.3.7
- Marques, F., Minimal surfaces - variational theory and applications, Proceedings of the International Congress of Mathematicians, Seoul2014. Zbl1373.53004MR3728473
- Marques, F., Neves, A., Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math.209 (2017), no. 2, 577-616. Zbl1390.53064MR3674223DOI10.1007/s00222-017-0716-6
- Marques, F., Neves, A., Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179 (2014), no. 2, 683-782. Zbl1297.49079MR3152944DOI10.4007/annals.2014.179.2.6
- Marques, F., Neves, A., Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math.4 (2016), no. 4, 463-511. Zbl1367.49036MR3572636DOI10.4310/CJM.2016.v4.n4.a2
- Marques, F., Neves, A., Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J.161 (2012), no. 14, 2725-2752. Zbl1260.53079MR2993139DOI10.1215/00127094-1813410
- Marques, F. C., Neves, A., Song, A., Equidistribution of minimal hypersurfaces for generic metrics, preprint (arXiv: 1712.06238). Zbl1419.53061MR3953507DOI10.1007/s00222-018-00850-5
- Máximo, D., Nunes, I., Smith, G., Free boundary minimal annuli in convex three-manifolds, J. Differential Geom.106 (2017), no. 1, 139-186. Zbl1386.53071MR3640009
- McGrath, P., A characterization of the critical catenoid, preprint (arXiv:1603.04114v2). Zbl06971405MR3798860DOI10.1512/iumj.2018.67.7251
- Nadirashvili, N., Penskoi, A., Free boundary minimal surfaces and overdetermined boundary value problems, preprint (arXiv: 1812.08943). Zbl07317681MR4174046DOI10.1007/s11854-020-0129-0
- Nitsche, J., Stationary partitioning of convex bodies, Arch. Rational Mech. Anal.89 (1985), no. 1, 1-19. Zbl0572.52005MR784101DOI10.1007/BF00281743
- Osserman, R., On complete minimal surfaces, Arch. Rational Mech. Anal.13 (1963), 392-404. Zbl0127.38003MR151907DOI10.1007/BF01262706
- Osserman, R., Global properties of minimal surfaces in and , Ann. of Math. (2) 80 (1964), 340-364. Zbl0134.38502MR179701DOI10.2307/1970396
- Pitts, J., Existence and regularity of minimal surfaces on Riemannian manifolds, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo. Mathematical Notes27 (1981). Zbl0462.58003MR626027
- Ros, A., One-sided complete stable minimal surfaces, J. Differential Geom.74 (2006), no. 1, 69-92. Zbl1110.53009MR2260928
- Ros, A., Stability of minimal and constant mean curvature surfaces with free boundary, Mat. Contemp.35 (2008), 221-240. Zbl1206.53011MR2584186
- Ros, A., Souam, R., On stability of capillary surfaces in a ball, Pacific J. Math.178 (1997), no. 2, 345-361. Zbl0930.53007MR1447419DOI10.2140/pjm.1997.178.345
- Ros, A., Vergasta, E., Stability for hypersurfaces of constant mean curvature with free boundary, Geom. Dedicata56 (1995), no. 1, 19-33. Zbl0912.53009MR1338315DOI10.1007/BF01263611
- Savo, A., Index bounds for minimal hypersurfaces of the sphere, Indiana Univ. Math. J.59 (2010), no. 3, 823-837. Zbl1209.53052MR2779062DOI10.1512/iumj.2010.59.4013
- Schoen, R., Simon, L., Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math.34 (1981), no. 6, 741-797. Zbl0497.49034MR634285DOI10.1002/cpa.3160340603
- Sharp, B., Compactness of minimal hypersurfaces with bounded index, J. Differential Geom.106 (2017), no. 2, 317-339. Zbl1390.53065MR3662994DOI10.4310/jdg/1497405628
- Smith, G., Zhou, D., The Morse index of the critical catenoid, preprint (arXiv:1609.01485). Zbl1418.53010MR3978532DOI10.1007/s10711-018-0412-8
- Struwe, M., On a free boundary problem for minimal surfaces, Invent. Math.75 (1984), no. 3, 547-560. Zbl0537.35037MR735340DOI10.1007/BF01388643
- Tysk, J., Finiteness of index and total scalar curvature for minimal hypersurfaces, Proc. Amer. Math. Soc.105 (1989), no. 2, 428-435. Zbl0661.53039MR946639DOI10.2307/2046961
- Wang, G., Birkhoff minimax principle for minimal surfaces with a free boundary, Math. Ann.314 (1999), no. 1, 89-107. Zbl0938.58015MR1689264DOI10.1007/s002080050287
- White, B., Which ambient spaces admit isoperimetric inequalities for submanifolds?, J. Diff. Geom.83 (2009), no. 1 213-228. Zbl1179.53061MR2545035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.