Free boundary minimal surfaces: a survey of recent results
Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche (2019)
- Volume: 86, Issue: 1, page 103-121
- ISSN: 0370-3568
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aiex, N., Hong, Index, H.estimates for surfaces with constant mean curvature in 3-dimensional manifolds, preprint (arXiv: 1901.00944). Zbl07294622MR4176856DOI10.1007/s00526-020-01855-w
- Aché, A., Maximo, D., Wu, H., Metrics with nonnegative Ricci curvature on convex three-manifolds, Geom. Topol.20 (2016), no. 5, 2905-2922. Zbl1350.53049MR3556351DOI10.2140/gt.2016.20.2905
- Almgren, F., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277-292. Zbl0146.11905MR200816DOI10.2307/1970520
- Ambrozio, L., Buzano, R., Carlotto, A., Sharp, B., Geometric convergence results for closed minimal surfaces via bubbling analysis, preprint (arXiv: 1803.04956). Zbl1426.53013
- Ambrozio, L., Buzano, R., Carlotto, A., Sharp, B., Bubbling analysis and geometric convergence results for free boundary minimal surfaces, J. Éc. polytech. Math.6 (2019), 621-664. Zbl1426.53013MR4014631DOI10.5802/jep.102
- Ambrozio, L., Carlotto, A., Sharp, B., Compactness of the space of minimal hypersurfaces with bounded volume and p-th Jacobi eigenvalue, J. Geom. Anal.26 (2016), no. 4, 2591-2601. Zbl1354.53069MR3544933DOI10.1007/s12220-015-9640-4
- Ambrozio, L., Carlotto, A., Sharp, B., Compactness analysis for free boundary minimal hypersurfaces, Calc. Var. PDE57 (2018), no. 1, 1-39. Zbl1414.53008MR3740402DOI10.1007/s00526-017-1281-y
- Ambrozio, L., Carlotto, A., Sharp, B., Comparing the Morse index and the first Betti number of minimal hypersurfaces, J. Differential Geom., 108 (2018), no. 3, 379-410. Zbl1385.53051MR3770846DOI10.4310/jdg/1519959621
- Ambrozio, L., Carlotto, A., Sharp, B., Index estimates for free boundary minimal hypersurfaces, Math. Ann., 370 (2018), no. 3-4, pages 1063-1078. Zbl1391.53007MR3770163DOI10.1007/s00208-017-1549-8
- Brendle, S., Embedded minimal tori in S3 and the Lawson conjecture, Acta Math.211 (2013), no. 2, 177-190. Zbl1305.53061MR3143888DOI10.1007/s11511-013-0101-2
- Buzano, R., Sharp, B., Qualitative and quantitative estimates for minimal hypersurfaces with bounded index and area, Trans. Amer. Math. Soc., 370 (2018), 4373-4399. Zbl1390.53008MR3811532DOI10.1090/tran/7168
- Caffarelli, L., Jerison, D., Kenig, C., Global energy minimizers for free boundary problems and full regularity in three dimensions. Noncompact problems at the intersection of geometry, analysis, and topology, 83-97, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004. Zbl1330.35545MR2082392DOI10.1090/conm/350/06339
- Calabi, E., Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry1 (1967), 111-125. Zbl0171.20504MR233294
- Cavalcante, M., de Oliveira, D., Index estimates for free boundary constant mean curvature surfaces, preprint (arXiv: 1803.05995). MR4077688DOI10.2140/pjm.2020.305.153
- Cheng, S. Y. and Tysk, J., Schrödinger operators and index bounds for minimal submanifolds, Rocky Mountain J. Math.24 (1994), no. 3, 977-996. Zbl0818.53075MR1307586DOI10.1216/rmjm/1181072383
- Chen, J., Fraser, A., Pang, C., Minimal immersions of compact bordered Riemann surfaces with free boundary, Trans. Amer. Math. Soc., 367 (2014), no. 4, 2487-2507. Zbl1308.58007MR3301871DOI10.1090/S0002-9947-2014-05990-4
- Chodosh, O., Ketover, D., Maximo, D., Minimal surfaces with bounded index, Invent. Math.209 (2017), no. 3, 617-664. Zbl1378.53072MR3681392DOI10.1007/s00222-017-0717-5
- Chodosh, O., Maximo, D., On the topology and index of minimal surfaces, J. Differential Geom.104 (2016), no. 3, 399-418. Zbl1357.53016MR3568626
- Choi, H., Schoen, R., The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math.81 (1985), no. 3, 387-394. Zbl0577.53044MR807063DOI10.1007/BF01388577
- Choi, H., Wang, A., A first eigenvalue estimate for minimal hypersurfaces, J. Differential Geom.18 (1983), no. 3, 559-562. Zbl0523.53055MR723817
- Colding, T., De Lellis, C., Singular limit laminations, Morse index, and positive scalar curvature, Topology44 (2005), no. 1, 25-45. Zbl1096.53037MR2103999DOI10.1016/j.top.2004.01.007
- Colding, T., Minicozzi, W., A course in minimal surfaces, Graduate Studies in Mathematics, 121. American Mathematical Society, Providence, RI, 2011. xii+313 pp. Zbl1242.53007MR2780140DOI10.1090/gsm/121
- Courant, R., The existence of minimal surfaces of given topological structure under prescribed boundary conditions, Acta Math.72 (1940), 51-98. Zbl0023.39901MR2478DOI10.1007/BF02546328
- Courant, R., Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. Appendix by M. Schiffer, Interscience Publishers, Inc., New York, N.Y., 1950. xiii+330 pp. MR36317
- De Lellis, C., Ramic, J., Min-max theory for minimal hypersurfaces with boundary, preprint (arXiv:1611.00926). Zbl1408.53079MR3893761
- Devyver, B., Index of the critical catenoid, preprint (arXiv: 1609.02315). Zbl1412.53015MR3928806DOI10.1007/s10711-018-0353-2
- M. do Carmo, Peng, C. K., Stable complete minimal surfaces in \mathbb{R}^{3} are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 903-906. Zbl0442.53013MR546314DOI10.1090/S0273-0979-1979-14689-5
- Ejiri, N. and Micallef, M., Comparison between second variation of area and second variation of energy of a minimal surface, Adv. Calc. Var.1 (2008), no. 3, 223-239. Zbl1163.58006MR2458236DOI10.1515/ACV.2008.009
- Folha, A., Pacard, F., Zolotareva, T., Free boundary minimal surfaces in the unit 3-ball, Manuscripta Math.154 (2017), no. 3-4, 359-409. Zbl1381.35040MR3713919DOI10.1007/s00229-017-0924-9
- Fraser, A., On the free boundary variational problem for minimal disks, Comm. Pure Appl. Math.53 (2000), no. 8, 931-971. Zbl1039.58013MR1755947DOI10.1002/1097-0312(200008)53:8<931::AID-CPA1>3.3.CO;2-0
- Fraser, A., Index estimates for minimal surfaces and k-convexity, Proc. Amer. Math. Soc.135 (2007), no. 11, 3733-3744. Zbl1127.58007MR2336590DOI10.1090/S0002-9939-07-08894-6
- Fraser, A., Li, M., Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary, J. Differential Geom.96 (2014), no. 2 , 183-200. Zbl1295.53062MR3178438
- Fraser, A., Schoen, R., The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math.226 (2011), no. 5, 4011-4030. Zbl1215.53052MR2770439DOI10.1016/j.aim.2010.11.007
- Fraser, A., Schoen, R., Minimal surfaces and eigenvalue problems. Geometric analysis, mathematical relativity, and nonlinear partial differential equations, 105-121, Contemp. Math.599, Amer. Math. Soc., Providence, RI, 2013. Zbl1321.35118MR3202476DOI10.1090/conm/599/11927
- Fraser, A., Schoen, R., Uniqueness theorems for free boundary minimal disks in space forms, Int. Math. Res. Not. IMRN2015, no. 17, 8268-8274. Zbl1325.53076MR3404014DOI10.1093/imrn/rnu192
- Fraser, A., Schoen, R., Sharp eigenvalue bounds and minimal surfaces in the ball, Invent. Math.203 (2016), no. 3, 823-890. Zbl1337.35099MR3461367DOI10.1007/s00222-015-0604-x
- Freidin, B., Gulian, M., McGrath, P., Free boundary minimal surfaces in the unit ball with low cohomgeneity, Proc. Amer. Math. Soc.145 (2017), no. 4, 1671-1683. Zbl1360.49034MR3601558DOI10.1090/proc/13424
- Grüter, M., Jost, J., On embedded minimal disks in convex bodies, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986), no. 5, 345-390. Zbl0617.49017MR868522
- Guang, Q., Zhou, X., Compactness and generic finiteness for free boundary minimal hypersurfaces, preprint (arXiv:1803.01509). Zbl07326754MR231707DOI10.1002/malq.19680141304
- Hoffman, D., Meeks, W. H., The strong halfspace theorem for minimal surfaces, Invent. Math.101 (1990), no. 2, 373-377. Zbl0722.53054MR1062966DOI10.1007/BF01231506
- Hsiang, W.-Y., Minimal cones and the spherical Bernstein problem. I, Ann. of Math. (2) 118 (1983), no. 1, 61-73. Zbl0522.53051MR707161DOI10.2307/2006954
- Hsiang, W.-Y., Minimal cones and the spherical Bernstein problem. II, Invent. Math.74 (1983), no. 3, 351-369. Zbl0532.53045MR724010DOI10.1007/BF01394241
- Kapouleas, N., Li, M.Free boundary minimal surfaces in the unit three-ball via desingularization of the critical catenoid and equatorial disk, preprint (arXiv: 1709.08556).
- Kapouleas, N., Wygul, D., Free-boundary minimal surfaces with connected boundary in the 3-ball by tripling the equatorial disc, preprint (arXiv: 1711.00818).
- Irie, K., Marques, F. C., Neves, A., Density of minimal hypersurfaces for generic metrics, Ann. Math.187 (2018), no. 3, 963-972. Zbl1387.53083MR3779962DOI10.4007/annals.2018.187.3.8
- Jorge, L., Meeks, W. H., The topology of complete minimal surfaces of finite total Gaussian curvature, Topology22 (1983), no. 2, 203-221. Zbl0517.53008MR683761DOI10.1016/0040-9383(83)90032-0
- Jost, J., Existence results for embedded minimal surfaces of controlled topological type. I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 1, 15-50. Zbl0619.49019MR863634
- Jost, J., Existence results for embedded minimal surfaces of controlled topological type. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 3, 401-426. Zbl0669.49024MR881099
- Jost, J., Existence results for embedded minimal surfaces of controlled topological type. III, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 1, 165-167. Zbl0681.49039MR937541
- Ketover, D., Free boundary minimal surfaces of unbounded genus, preprint (arXiv:1612.08691). Zbl07088294
- Li, M., A general existence theorem for embedded minimal surfaces with free boundary, Comm. Pure Appl. Math.68 (2015), no. 2, 286-331. Zbl1321.53074MR3298664DOI10.1002/cpa.21513
- Li, M., Zhou, X., Min-max theory for free boundary minimal hypersurfaces I - regularity theory, preprint (arXiv:1611.02612).
- Lima, V., Bounds for the Morse index of free boundary minimal surfaces, preprint (arXiv: 1710.10971).
- Liokumovich, Y., Marques, F. C., Neves, A., Weyl law for the volume spectrum, Ann. Math.187 (2018), no. 3, 933-962. Zbl1390.53034MR3779961DOI10.4007/annals.2018.187.3.7
- Marques, F., Minimal surfaces - variational theory and applications, Proceedings of the International Congress of Mathematicians, Seoul2014. Zbl1373.53004MR3728473
- Marques, F., Neves, A., Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math.209 (2017), no. 2, 577-616. Zbl1390.53064MR3674223DOI10.1007/s00222-017-0716-6
- Marques, F., Neves, A., Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179 (2014), no. 2, 683-782. Zbl1297.49079MR3152944DOI10.4007/annals.2014.179.2.6
- Marques, F., Neves, A., Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math.4 (2016), no. 4, 463-511. Zbl1367.49036MR3572636DOI10.4310/CJM.2016.v4.n4.a2
- Marques, F., Neves, A., Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J.161 (2012), no. 14, 2725-2752. Zbl1260.53079MR2993139DOI10.1215/00127094-1813410
- Marques, F. C., Neves, A., Song, A., Equidistribution of minimal hypersurfaces for generic metrics, preprint (arXiv: 1712.06238). Zbl1419.53061MR3953507DOI10.1007/s00222-018-00850-5
- Máximo, D., Nunes, I., Smith, G., Free boundary minimal annuli in convex three-manifolds, J. Differential Geom.106 (2017), no. 1, 139-186. Zbl1386.53071MR3640009
- McGrath, P., A characterization of the critical catenoid, preprint (arXiv:1603.04114v2). Zbl06971405MR3798860DOI10.1512/iumj.2018.67.7251
- Nadirashvili, N., Penskoi, A., Free boundary minimal surfaces and overdetermined boundary value problems, preprint (arXiv: 1812.08943). Zbl07317681MR4174046DOI10.1007/s11854-020-0129-0
- Nitsche, J., Stationary partitioning of convex bodies, Arch. Rational Mech. Anal.89 (1985), no. 1, 1-19. Zbl0572.52005MR784101DOI10.1007/BF00281743
- Osserman, R., On complete minimal surfaces, Arch. Rational Mech. Anal.13 (1963), 392-404. Zbl0127.38003MR151907DOI10.1007/BF01262706
- Osserman, R., Global properties of minimal surfaces in E^{3} and E^{n}, Ann. of Math. (2) 80 (1964), 340-364. Zbl0134.38502MR179701DOI10.2307/1970396
- Pitts, J., Existence and regularity of minimal surfaces on Riemannian manifolds, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo. Mathematical Notes27 (1981). Zbl0462.58003MR626027
- Ros, A., One-sided complete stable minimal surfaces, J. Differential Geom.74 (2006), no. 1, 69-92. Zbl1110.53009MR2260928
- Ros, A., Stability of minimal and constant mean curvature surfaces with free boundary, Mat. Contemp.35 (2008), 221-240. Zbl1206.53011MR2584186
- Ros, A., Souam, R., On stability of capillary surfaces in a ball, Pacific J. Math.178 (1997), no. 2, 345-361. Zbl0930.53007MR1447419DOI10.2140/pjm.1997.178.345
- Ros, A., Vergasta, E., Stability for hypersurfaces of constant mean curvature with free boundary, Geom. Dedicata56 (1995), no. 1, 19-33. Zbl0912.53009MR1338315DOI10.1007/BF01263611
- Savo, A., Index bounds for minimal hypersurfaces of the sphere, Indiana Univ. Math. J.59 (2010), no. 3, 823-837. Zbl1209.53052MR2779062DOI10.1512/iumj.2010.59.4013
- Schoen, R., Simon, L., Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math.34 (1981), no. 6, 741-797. Zbl0497.49034MR634285DOI10.1002/cpa.3160340603
- Sharp, B., Compactness of minimal hypersurfaces with bounded index, J. Differential Geom.106 (2017), no. 2, 317-339. Zbl1390.53065MR3662994DOI10.4310/jdg/1497405628
- Smith, G., Zhou, D., The Morse index of the critical catenoid, preprint (arXiv:1609.01485). Zbl1418.53010MR3978532DOI10.1007/s10711-018-0412-8
- Struwe, M., On a free boundary problem for minimal surfaces, Invent. Math.75 (1984), no. 3, 547-560. Zbl0537.35037MR735340DOI10.1007/BF01388643
- Tysk, J., Finiteness of index and total scalar curvature for minimal hypersurfaces, Proc. Amer. Math. Soc.105 (1989), no. 2, 428-435. Zbl0661.53039MR946639DOI10.2307/2046961
- Wang, G., Birkhoff minimax principle for minimal surfaces with a free boundary, Math. Ann.314 (1999), no. 1, 89-107. Zbl0938.58015MR1689264DOI10.1007/s002080050287
- White, B., Which ambient spaces admit isoperimetric inequalities for submanifolds?, J. Diff. Geom.83 (2009), no. 1 213-228. Zbl1179.53061MR2545035