Existence results for embedded minimal surfaces of controlled topological type, II

Jürgen Jost

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1986)

  • Volume: 13, Issue: 3, page 401-426
  • ISSN: 0391-173X

How to cite

top

Jost, Jürgen. "Existence results for embedded minimal surfaces of controlled topological type, II." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13.3 (1986): 401-426. <http://eudml.org/doc/83985>.

@article{Jost1986,
author = {Jost, Jürgen},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {strictly convex body; minimal disk; minimal surface; positive mean curvature; free boundary problem},
language = {eng},
number = {3},
pages = {401-426},
publisher = {Scuola normale superiore},
title = {Existence results for embedded minimal surfaces of controlled topological type, II},
url = {http://eudml.org/doc/83985},
volume = {13},
year = {1986},
}

TY - JOUR
AU - Jost, Jürgen
TI - Existence results for embedded minimal surfaces of controlled topological type, II
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1986
PB - Scuola normale superiore
VL - 13
IS - 3
SP - 401
EP - 426
LA - eng
KW - strictly convex body; minimal disk; minimal surface; positive mean curvature; free boundary problem
UR - http://eudml.org/doc/83985
ER -

References

top
  1. [I] J. Jost, Existence results for embedded minimal surfaces of controlled topological type, I, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4) 13 (1986), pp. 15-50. Zbl0619.49019MR863634
  2. [AW] W. Allard, On the first variation of a varifold, Ann. of Math., 95 (1972), pp. 417-491. Zbl0252.49028MR307015
  3. [A] F. Almgren, The homotopy groups of the integral cycle groups, Topology, 1 (1962), pp. 257-299. Zbl0118.18503MR146835
  4. [GHN] M. Grüter - S. Hildebrandt - J.C.C. Nitsche, On the boundary behavior of minimal surfaces with a free boundary which are not minima of the area, Manuscripta Math., 35 (1981), pp. 387-410. Zbl0483.49037MR636464
  5. [GJ1] M. Grüter - J. Jost, Allard type regularity results for varifolds with free boundaries, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4) 13 (1986), pp. 129-169. Zbl0615.49018MR863638
  6. [GJ2] M. Grüter - J. Jost, On embedded minimal disks in convex bodies, Ann. Inst. H. Poincaré, Analyse non linéaire, 3 (1986), pp. 345-390. Zbl0617.49017MR868522
  7. [HN] S. Hildebrandt - J.C.C. Nitsche, Geometric properties of minimal surfaces with free boundaries, Math. Z., 184 (1983), pp. 497-509. Zbl0505.49020MR719490
  8. [Kl] W. Klingenberg, Lectures on closed geodesics, Springer, Berlin - Heidelberg - New York, 1978. Zbl0397.58018MR478069
  9. [Kü] A. Küster, An optimal estimate of the free boundary of a minimal surface, J. reine angew. Math., 349 (1984), pp. 55-62. Zbl0527.53006MR743964
  10. [MSY] W. Meeks - L. Simon - S.T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math., 146 (1982), pp. 621-659. Zbl0521.53007MR678484
  11. [N] J. Nitsche, Stationary partitioning of convex bodies, Arch. Rat. Mech. Anal., 89 (1985), pp. 1-19. Zbl0572.52005MR784101
  12. [P] J. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Math. Notes 27, Princeton Univ. Press, 1981. Zbl0462.58003MR626027
  13. [SS] L. Simon - F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary metric, to appear. Zbl0511.49021
  14. [Sm] B. Smyth, Stationary minimal surfaces with boundary on a simplex, Invent. Math., 76 (1984), pp. 411-420. Zbl0527.53005MR746536
  15. [St] M. Struwe, On a free boundary problem for minimal surfaces, Invent. Math., 75 (1984), pp. 547-560. Zbl0537.35037MR735340

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.