Empirical Negation, Co-negation and Contraposition Rule I: Semantical Investigations

Satoru Niki

Bulletin of the Section of Logic (2020)

  • Volume: 49, Issue: 3, page 231-253
  • ISSN: 0138-0680

Abstract

top
We investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CCω.

How to cite

top

Satoru Niki. "Empirical Negation, Co-negation and Contraposition Rule I: Semantical Investigations." Bulletin of the Section of Logic 49.3 (2020): 231-253. <http://eudml.org/doc/296783>.

@article{SatoruNiki2020,
abstract = {We investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CCω.},
author = {Satoru Niki},
journal = {Bulletin of the Section of Logic},
keywords = {empirical negation; co-negation; Beth semantics; Kripke semantics; intuitionism},
language = {eng},
number = {3},
pages = {231-253},
title = {Empirical Negation, Co-negation and Contraposition Rule I: Semantical Investigations},
url = {http://eudml.org/doc/296783},
volume = {49},
year = {2020},
}

TY - JOUR
AU - Satoru Niki
TI - Empirical Negation, Co-negation and Contraposition Rule I: Semantical Investigations
JO - Bulletin of the Section of Logic
PY - 2020
VL - 49
IS - 3
SP - 231
EP - 253
AB - We investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CCω.
LA - eng
KW - empirical negation; co-negation; Beth semantics; Kripke semantics; intuitionism
UR - http://eudml.org/doc/296783
ER -

References

top
  1. [1] L. E. J. Brouwer, Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil, [in:] A. Heyring (ed.), L.E.J. Brouwer Collected Works 1: Philosophy and Foundations of Mathematics, North-Holland (1975), pp. 191–221, DOI: http://dx.doi.org/10.1016/C2013-0-11893-4 
  2. [2] J. L. Castiglioni, R. C. E. Biraben, Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation, Logic Journal of the IGPL, vol. 22(2) (2014), pp. 268–273, DOI: http://dx.doi.org/10.1093/jigpal/jzt027 
  3. [3] M. De, Empirical Negation, Acta Analytica, vol. 28 (2013), pp. 49–69, DOI: http://dx.doi.org/10.1007/s12136-011-0138-9 
  4. [4] M. De, H. Omori, More on Empirical Negation, [in:] R. Goreé, B. Kooi, A. Kurucz (eds.), Advances in Modal Logic, vol. 10, College Publications (2014), pp. 114–133. 
  5. [5] K. Došen, Negation on the Light of Modal Logic, [in:] D. M. Gabbay, H. Wansing (eds.), What is Negation?, Kluwer Academic Publishing. (1999), DOI: http://dx.doi.org/10.1007/978-94-015-9309-04 
  6. [6] T. M. Ferguson, Extensions of Priest-da Costa Logic, Studia Logica, vol. 102 (2013), pp. 145–174, DOI: http://dx.doi.org/10.1007/s11225-013-9469-4 
  7. [7] A. B. Gordienko, A Paraconsistent Extension of Sylvan's Logic, Algebra and Logic, vol. 46(5) (2007), pp. 289–296, DOI: http://dx.doi.org/10.1007/s10469-007-0029-8 
  8. [8] A. Heyting, Intuitionism: An Introduction, third revised ed., North Holland (1976). 
  9. [9] M. Osorio, J. L. Carballido, C. Zepeda, J. A. Castellanos, Weakening and Extending Z, Logica Universalis, vol. 9(3) (2015), pp. 383–409, DOI: http://dx.doi.org/10.1007/s11787-015-0128-6 
  10. [10] M. Osorio, J. A. C. Joo, Equivalence among RC-type paraconsistent logics, Logic Journal of the IGPL, vol. 25(2) (2017), pp. 239–252, DOI: http://dx.doi.org/10.1093/jigpal/jzw065 
  11. [11] G. Priest, Dualising Intuitionistic Negation, Principia, vol. 13(2) (2009), pp. 165–184, DOI: http://dx.doi.org/10.5007/1808-1711.2009v13n2p165 
  12. [12] C. Rauszer, A formalization of the propositional calculus of H-B logic, Studia Logica, vol. 33(1) (1974), pp. 23–34, DOI: http://dx.doi.org/10.1007/BF02120864 
  13. [13] C. Rauszer, Applications of Kripke models to Heyting-Brouwer logic, Studia Logica, vol. 36(1) (1977), pp. 61–71, DOI: http://dx.doi.org/10.1007/BF02121115 
  14. [14] G. Restall, Extending intuitionistic logic with subtraction (1997), unpublished. 
  15. [15] R. Sylvan, Variations on da Costa C Systems and dual-intuitionistic logics I. Analyses of Cω and CCω, Studia Logica, vol. 49(1) (1990), pp. 47–65, DOI: http://dx.doi.org/10.1007/BF00401553 
  16. [16] A. S. Troelstra, J. R. Moschovakis, A.S. Troelstra, D. van Dalen, Constructivism in Mathematics Corrections, URL: https://www.math.ucla.edu/~joan/ourTvDcorr030818 [accessed 20/Jul/2020]. 
  17. [17] A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. I, Elsevier (1988). 
  18. [18] A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. II, Elsevier (1988). 
  19. [19] D. van Dalen, L.E.J. Brouwer: Topologist, Intuitionist, Philosopher, Springer (2013), DOI: http://dx.doi.org/10.1007/978-1-4471-4616-2 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.