Binomial sequences

Andrzej Nowicki

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2019)

  • Volume: 18, page 93-122
  • ISSN: 2300-133X

Abstract

top
We present a description of all binomial sequences of polynomials in one variable over a field of characteristic zero.

How to cite

top

Andrzej Nowicki. "Binomial sequences." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 18 (2019): 93-122. <http://eudml.org/doc/296798>.

@article{AndrzejNowicki2019,
abstract = {We present a description of all binomial sequences of polynomials in one variable over a field of characteristic zero.},
author = {Andrzej Nowicki},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {binomial sequence; lower factorial; upper factorial; linear operator of type zero; binomial convolution; principal sequence},
language = {eng},
pages = {93-122},
title = {Binomial sequences},
url = {http://eudml.org/doc/296798},
volume = {18},
year = {2019},
}

TY - JOUR
AU - Andrzej Nowicki
TI - Binomial sequences
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2019
VL - 18
SP - 93
EP - 122
AB - We present a description of all binomial sequences of polynomials in one variable over a field of characteristic zero.
LA - eng
KW - binomial sequence; lower factorial; upper factorial; linear operator of type zero; binomial convolution; principal sequence
UR - http://eudml.org/doc/296798
ER -

References

top
  1. Aceto, Lidia and Isabel Cação. "A matrix approach to Sheffer polynomials." J. Math. Anal. Appl. 446, no. 1 (2017): 87-100. 
  2. Berthelot, Pierre Cohomologie cristalline des schémas de caractéristique p > 0. Vol. 407 of Lecture Notes in Mathematics. Berlin-New York: Springer-Verlag, 1974. 
  3. Brand, Louis. "Binomial expansions in factorial powers." Amer. Math. Monthly 67 (1960): 953-957. 
  4. Brown, J.W. "On zero type sets of Laguerre polynomials." Duke Math. J. 35 (1968): 821-823. 
  5. Di Bucchianico, A. Probabilistic and analytical aspects of the umbral calculus. Vol. 119 CWI Tract. Amsterdam: Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, 1997 
  6. Carlitz, L. "Some generating functions for Laguerre polynomials." Duke Math. J. 35 (1968), 825-827. 
  7. Comtet, Louis. Advanced combinatorics. The art of finite and infinite expansions. Dordrecht: D. Reidel Publishing Co., 1974. 
  8. Ekhad, Shalosh B. and John E. Majewicz. "A short WZ-style proof of Abel’s identity." Electron. J. Combin. 3, no. 2 (1996): Research Paper 16, approx. 1 p. 
  9. Foata, Dominique. "Enumerating k-trees." Discrete Math. 1, no. 2 (1971/72): 181-186. 
  10. Graham, Ronald L., Donald E. Knuth and Oren Patashnik. Concrete mathematics. A foundation for computer science. Reading, MA: Addison-Wesley Publishing Company, 1989. 
  11. Huang, Fengying and Bolian Liu. "The Abel-type polynomial identities." Electron. J. Combin. 17, no. 1, (2010): Research Paper 10, 7 pp. 
  12. Kisil, Vladimir V. "Polynomial sequences of binomial type and path integrals." Ann. Comb. 6, no. 1, (2002): 45-56. 
  13. Krall, H.L. "Polynomials with the binomial property." Amer. Math. Monthly 64 (1957): 342-343. 
  14. Lipnowski, M. "A solution of Problem 310." Vol. 5 of Olymon – Mathematical Olympiads’ Correspondence Program. Canada: Canadian Mathematical Society, 2004. 
  15. Mihoubi, Miloud. "Bell polynomials and binomial type sequences." Discrete Math. 308, no. 12 (2008): 2450-2459. 
  16. Młotkowski, Wojciech and Romanowicz, Anna. "A family of sequences of binomial type." Probab. Math. Statist. 33, no. 2 (2013): 401-408. 
  17. Nowicki, Andrzej. Arithmetic functions Vol.5 of Podróze po Imperium Liczb. Torun, Olsztyn: Wydawnictwo OWSIiZ, 2012. 
  18. Nowicki, Andrzej. Factorials and binomial coefficiens, Vol. 11 of Podróze po Imperium Liczb. Torun, Olsztyn: Wydawnictwo OWSIiZ, 2013. 
  19. Petrullo, Pasquale. "Outcomes of the Abel identity." Mediterr. J. Math. 10, no. 3 (2013): 1141-1150. 
  20. Roman, Steven M. and Gian-Carlo Rota. "The umbral calculus." Advances in Math. 27, no. 2 (1978): 95-188. 
  21. Rota, Gian-Carlo, D. Kahaner and A. Odlyzko, "On the foundations of combinatorial theory. VIII. Finite operator calculus." J. Math. Anal. Appl. 42 (1973): 84-760. 
  22. Rota, Gian-Carlo, Jianhong Shen and Brian D. Taylor. "All polynomials of binomial type are represented by Abel polynomials." Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, no. 3-4 (1997): 731-738. 
  23. Schneider, Jonathan. "Polynomial sequences of binomial-type arising in graph theory." Electron. J. Combin. 21, no. 1 (2014): Paper 1.43, 17 pp. 
  24. Sheffer, I.M. "Some properties of polynomial sets of type zero." Duke Math. J. 5 (1939): 590-622. 
  25. Shukla, A.K. and S.J. Rapeli. "An extension of Sheffer polynomials." Proyecciones 30, no. 2 (2011): 265-275. 
  26. Sykora, S. "An Abel’s identity and its corollaries." Preprint, 2014. 
  27. Zheng, G. "A solution of Problem 310." Vol. 5 of Olymon – Mathematical Olympiads’ Correspondence Program. Canada: Canadian Mathematical Society, 2004. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.