All polynomials of binomial type are represented by Abel polynomials

Gian-Carlo Rota; Jianhong Shen; Brian D. Taylor

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 3-4, page 731-738
  • ISSN: 0391-173X

How to cite

top

Rota, Gian-Carlo, Shen, Jianhong, and Taylor, Brian D.. "All polynomials of binomial type are represented by Abel polynomials." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 731-738. <http://eudml.org/doc/84312>.

@article{Rota1997,
author = {Rota, Gian-Carlo, Shen, Jianhong, Taylor, Brian D.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {umbral polynomial; umbral calculus; functional composition of formal power series},
language = {eng},
number = {3-4},
pages = {731-738},
publisher = {Scuola normale superiore},
title = {All polynomials of binomial type are represented by Abel polynomials},
url = {http://eudml.org/doc/84312},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Rota, Gian-Carlo
AU - Shen, Jianhong
AU - Taylor, Brian D.
TI - All polynomials of binomial type are represented by Abel polynomials
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 731
EP - 738
LA - eng
KW - umbral polynomial; umbral calculus; functional composition of formal power series
UR - http://eudml.org/doc/84312
ER -

References

top
  1. [1] N. Ray, All binomial sequences are factorial, unpublished manuscript. 
  2. [2] S. Roman - G.-C. Rota, The umbral calculus, Adv. Math.27 (1978), 95-188. Zbl0375.05007MR485417
  3. [3] G.-C. Rota - D. Kahaner - A. Odlyzko, Finite operator calculus, J. Math. Anal. Appl.42 (1973), 685-760. Zbl0267.05004MR345826
  4. [4] G.-C. Rota - B.D. Taylor, An introduction to the umbral calculus, in Analysis, Geometry and Groups: A Riemann Legacy VolumeHadronic Press, Palm Harbor, FL, 1993, 513-525. Zbl0910.05010MR1299353
  5. [5] G.-C. Rota - B.D. Taylor, The classical umbral calculus, SIAM J. Math. Anal.25 (1994), 694-711. Zbl0797.05006MR1266584
  6. [6] B.D. Taylor, Difference equations via the classical umbral calculus, in Proceedings of the Rotafest and Umbral Calculus Workshop Birkhauser, Boston, to appear. Zbl0903.05007MR1627386

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.