All polynomials of binomial type are represented by Abel polynomials
Gian-Carlo Rota; Jianhong Shen; Brian D. Taylor
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 3-4, page 731-738
- ISSN: 0391-173X
Access Full Article
topHow to cite
topRota, Gian-Carlo, Shen, Jianhong, and Taylor, Brian D.. "All polynomials of binomial type are represented by Abel polynomials." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 731-738. <http://eudml.org/doc/84312>.
@article{Rota1997,
author = {Rota, Gian-Carlo, Shen, Jianhong, Taylor, Brian D.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {umbral polynomial; umbral calculus; functional composition of formal power series},
language = {eng},
number = {3-4},
pages = {731-738},
publisher = {Scuola normale superiore},
title = {All polynomials of binomial type are represented by Abel polynomials},
url = {http://eudml.org/doc/84312},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Rota, Gian-Carlo
AU - Shen, Jianhong
AU - Taylor, Brian D.
TI - All polynomials of binomial type are represented by Abel polynomials
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 731
EP - 738
LA - eng
KW - umbral polynomial; umbral calculus; functional composition of formal power series
UR - http://eudml.org/doc/84312
ER -
References
top- [1] N. Ray, All binomial sequences are factorial, unpublished manuscript.
- [2] S. Roman - G.-C. Rota, The umbral calculus, Adv. Math.27 (1978), 95-188. Zbl0375.05007MR485417
- [3] G.-C. Rota - D. Kahaner - A. Odlyzko, Finite operator calculus, J. Math. Anal. Appl.42 (1973), 685-760. Zbl0267.05004MR345826
- [4] G.-C. Rota - B.D. Taylor, An introduction to the umbral calculus, in Analysis, Geometry and Groups: A Riemann Legacy VolumeHadronic Press, Palm Harbor, FL, 1993, 513-525. Zbl0910.05010MR1299353
- [5] G.-C. Rota - B.D. Taylor, The classical umbral calculus, SIAM J. Math. Anal.25 (1994), 694-711. Zbl0797.05006MR1266584
- [6] B.D. Taylor, Difference equations via the classical umbral calculus, in Proceedings of the Rotafest and Umbral Calculus Workshop Birkhauser, Boston, to appear. Zbl0903.05007MR1627386
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.