Metrizable space of multivalued maps

Mirosław Ślosarski

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2021)

  • Volume: 20, page 77-93
  • ISSN: 2300-133X

Abstract

top
In this article we define a metrizable space of multivalued maps. We show that the metric defined in this space is closely related to the homotopy of multivalued maps. Moreover, we study properties of this space and give a few practical applications of the new metric.

How to cite

top

Mirosław Ślosarski. "Metrizable space of multivalued maps." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 20 (2021): 77-93. <http://eudml.org/doc/296825>.

@article{MirosławŚlosarski2021,
abstract = {In this article we define a metrizable space of multivalued maps. We show that the metric defined in this space is closely related to the homotopy of multivalued maps. Moreover, we study properties of this space and give a few practical applications of the new metric.},
author = {Mirosław Ślosarski},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {Diagram, pseudometric; dist-morphism; multivalued map determined by the dist-morphism; D-metric; metrizable space of multivalued maps},
language = {eng},
pages = {77-93},
title = {Metrizable space of multivalued maps},
url = {http://eudml.org/doc/296825},
volume = {20},
year = {2021},
}

TY - JOUR
AU - Mirosław Ślosarski
TI - Metrizable space of multivalued maps
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2021
VL - 20
SP - 77
EP - 93
AB - In this article we define a metrizable space of multivalued maps. We show that the metric defined in this space is closely related to the homotopy of multivalued maps. Moreover, we study properties of this space and give a few practical applications of the new metric.
LA - eng
KW - Diagram, pseudometric; dist-morphism; multivalued map determined by the dist-morphism; D-metric; metrizable space of multivalued maps
UR - http://eudml.org/doc/296825
ER -

References

top
  1. Górniewicz, Lech. Topological methods in fixed point theory of multivalued mappings. Dordrecht: Springer, 2006. 
  2. Górniewicz, Lech. "Homological methods in fixed point theory of multi-valued maps." Dissertationes Math. 129 (1976): 1-66. 
  3. Górniewicz, Lech. "Topological degree and its applications to differential inclusions." Raccolta di Seminari del Dipartimento di Matematica dell’Universita degli Studi della Calabria, March-April 1983. 
  4. Górniewicz, Lech, and Andrzej Granas. "Topology of morphisms and fixed point problems for set-valued maps." Fixed point theory and applications (Marseille, 1989), 173–191. Vol. 252 of Pitman Res. Notes Math. Ser. Harlow: Longman Sci. Tech., 1991. 
  5. Górniewicz, Lech, and Andrzej Granas. "Some general theorems in coincidence theory." I. J. Math. Pures Appl. (9) 60, no. 4 (1981): 361-373. 
  6. Kryszewski, Wojciech. Homotopy properties of set-valued mappings. Torun: The Nicolaus Copernicus University, 1997. 
  7. Kryszewski, Wojciech. "Topological and approximation methods of degree theory of set-valued maps." Dissertationes Math. (Rozprawy Mat.) 336 (1994): 101 pp. 
  8. Ślosarski, Mirosław. "The multi-morphisms and their properties and applications." Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015): 5-25. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.