Homological methods in fixed-point theory of multi-valued maps

Lech Górniewicz

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976

Abstract

top
CONTENTS  Introduction................................................................. 5I. HOMOLOGY  1. Preliminaries............................................................. 7  2. Maps in spaces of finite type............................................. 9  3. The Čech homology functor with compact carriers........................... 11  4. Vietoris maps............................................................. 13  5. Homology of open subsets of Euclidean spaces.............................. 14II. THE LEFSCHETZ NUMBER  1. The (ordinary) Lefschetz number........................................... 18  2. The generalized Lefschetz number.......................................... 20III. MULTI-VALUED MAPS  1. Upper semi-continuous and compact multi-valued mapB....................... 24  2. Admissible maps........................................................... 26  3. Homotopy and selectors.................................................... 9  4. Lefschetz maps............................................................ 30IV. ANB-s, AANR-B and w-AANB-s  1. ANR-s..................................................................... 32  2. Approximation Theorem..................................................... 33  3. AANR-B.................................................................... 34  4. w-AANR-s.................................................................. 36V. THE LEFSCHETZ FIXED-POINT THEOREM  1. The index of coincidence.................................................. 37  2. The Lefschetz Fixed-Point Theorem for open subsets in R n ............... 40  3. The Lefschetz Fixed-Point Theorem for AANR-s.............................. 41  4. Neighbourhood fixed-point property........................................ 45  5. The Lefschetz Fixed-Point Theorem for w-AANR-s............................ 46  6. Two consequences of the Lefschetz Fixed-Point Theorem..................... 47VI. FIXED-POINT PROPERTY OP THE TYCHONOFF CUBE  1. Almost fixed points....................................................... 51  2. Fixed-point property for infinite products................................ 51

How to cite

top

Lech Górniewicz. Homological methods in fixed-point theory of multi-valued maps. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268399>.

@book{LechGórniewicz1976,
abstract = {CONTENTS  Introduction................................................................. 5I. HOMOLOGY  1. Preliminaries............................................................. 7  2. Maps in spaces of finite type............................................. 9  3. The Čech homology functor with compact carriers........................... 11  4. Vietoris maps............................................................. 13  5. Homology of open subsets of Euclidean spaces.............................. 14II. THE LEFSCHETZ NUMBER  1. The (ordinary) Lefschetz number........................................... 18  2. The generalized Lefschetz number.......................................... 20III. MULTI-VALUED MAPS  1. Upper semi-continuous and compact multi-valued mapB....................... 24  2. Admissible maps........................................................... 26  3. Homotopy and selectors.................................................... 9  4. Lefschetz maps............................................................ 30IV. ANB-s, AANR-B and w-AANB-s  1. ANR-s..................................................................... 32  2. Approximation Theorem..................................................... 33  3. AANR-B.................................................................... 34  4. w-AANR-s.................................................................. 36V. THE LEFSCHETZ FIXED-POINT THEOREM  1. The index of coincidence.................................................. 37  2. The Lefschetz Fixed-Point Theorem for open subsets in $R^n$............... 40  3. The Lefschetz Fixed-Point Theorem for AANR-s.............................. 41  4. Neighbourhood fixed-point property........................................ 45  5. The Lefschetz Fixed-Point Theorem for w-AANR-s............................ 46  6. Two consequences of the Lefschetz Fixed-Point Theorem..................... 47VI. FIXED-POINT PROPERTY OP THE TYCHONOFF CUBE  1. Almost fixed points....................................................... 51  2. Fixed-point property for infinite products................................ 51},
author = {Lech Górniewicz},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Homological methods in fixed-point theory of multi-valued maps},
url = {http://eudml.org/doc/268399},
year = {1976},
}

TY - BOOK
AU - Lech Górniewicz
TI - Homological methods in fixed-point theory of multi-valued maps
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS  Introduction................................................................. 5I. HOMOLOGY  1. Preliminaries............................................................. 7  2. Maps in spaces of finite type............................................. 9  3. The Čech homology functor with compact carriers........................... 11  4. Vietoris maps............................................................. 13  5. Homology of open subsets of Euclidean spaces.............................. 14II. THE LEFSCHETZ NUMBER  1. The (ordinary) Lefschetz number........................................... 18  2. The generalized Lefschetz number.......................................... 20III. MULTI-VALUED MAPS  1. Upper semi-continuous and compact multi-valued mapB....................... 24  2. Admissible maps........................................................... 26  3. Homotopy and selectors.................................................... 9  4. Lefschetz maps............................................................ 30IV. ANB-s, AANR-B and w-AANB-s  1. ANR-s..................................................................... 32  2. Approximation Theorem..................................................... 33  3. AANR-B.................................................................... 34  4. w-AANR-s.................................................................. 36V. THE LEFSCHETZ FIXED-POINT THEOREM  1. The index of coincidence.................................................. 37  2. The Lefschetz Fixed-Point Theorem for open subsets in $R^n$............... 40  3. The Lefschetz Fixed-Point Theorem for AANR-s.............................. 41  4. Neighbourhood fixed-point property........................................ 45  5. The Lefschetz Fixed-Point Theorem for w-AANR-s............................ 46  6. Two consequences of the Lefschetz Fixed-Point Theorem..................... 47VI. FIXED-POINT PROPERTY OP THE TYCHONOFF CUBE  1. Almost fixed points....................................................... 51  2. Fixed-point property for infinite products................................ 51
LA - eng
UR - http://eudml.org/doc/268399
ER -

Citations in EuDML Documents

top
  1. Adam Idzik, Borsuk-Ulam type theorems
  2. David Richeson, Connection matrix pairs
  3. Tomasz Kaczynski, Conley index for set-valued maps: from theory to computation
  4. Marian Mrozek, From the theorem of Ważewski to computer assisted proofs in dynamics
  5. Dorota Gabor, The coincidence index for fundamentally contractible multivalued maps with nonconvex values
  6. Mirosław Ślosarski, Metrizable space of multivalued maps
  7. Lech Górniewicz, Danuta Rozpłoch-Nowakowska, On the Schauder fixed point theorem
  8. Peter Saveliev, A Lefschetz-type coincidence theorem
  9. Liang-Ju Chu, Ching-Yan Lin, New versions on Nikaidô's coincidence theorem
  10. Dorota Gabor, Systems of Inclusions Involving Fredholm Operators and Noncompact Maps

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.