Homological methods in fixed-point theory of multi-valued maps
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1976
Access Full Book
topAbstract
topHow to cite
topLech Górniewicz. Homological methods in fixed-point theory of multi-valued maps. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1976. <http://eudml.org/doc/268399>.
@book{LechGórniewicz1976,
abstract = {CONTENTS Introduction................................................................. 5I. HOMOLOGY 1. Preliminaries............................................................. 7 2. Maps in spaces of finite type............................................. 9 3. The Čech homology functor with compact carriers........................... 11 4. Vietoris maps............................................................. 13 5. Homology of open subsets of Euclidean spaces.............................. 14II. THE LEFSCHETZ NUMBER 1. The (ordinary) Lefschetz number........................................... 18 2. The generalized Lefschetz number.......................................... 20III. MULTI-VALUED MAPS 1. Upper semi-continuous and compact multi-valued mapB....................... 24 2. Admissible maps........................................................... 26 3. Homotopy and selectors.................................................... 9 4. Lefschetz maps............................................................ 30IV. ANB-s, AANR-B and w-AANB-s 1. ANR-s..................................................................... 32 2. Approximation Theorem..................................................... 33 3. AANR-B.................................................................... 34 4. w-AANR-s.................................................................. 36V. THE LEFSCHETZ FIXED-POINT THEOREM 1. The index of coincidence.................................................. 37 2. The Lefschetz Fixed-Point Theorem for open subsets in $R^n$............... 40 3. The Lefschetz Fixed-Point Theorem for AANR-s.............................. 41 4. Neighbourhood fixed-point property........................................ 45 5. The Lefschetz Fixed-Point Theorem for w-AANR-s............................ 46 6. Two consequences of the Lefschetz Fixed-Point Theorem..................... 47VI. FIXED-POINT PROPERTY OP THE TYCHONOFF CUBE 1. Almost fixed points....................................................... 51 2. Fixed-point property for infinite products................................ 51},
author = {Lech Górniewicz},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Homological methods in fixed-point theory of multi-valued maps},
url = {http://eudml.org/doc/268399},
year = {1976},
}
TY - BOOK
AU - Lech Górniewicz
TI - Homological methods in fixed-point theory of multi-valued maps
PY - 1976
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS Introduction................................................................. 5I. HOMOLOGY 1. Preliminaries............................................................. 7 2. Maps in spaces of finite type............................................. 9 3. The Čech homology functor with compact carriers........................... 11 4. Vietoris maps............................................................. 13 5. Homology of open subsets of Euclidean spaces.............................. 14II. THE LEFSCHETZ NUMBER 1. The (ordinary) Lefschetz number........................................... 18 2. The generalized Lefschetz number.......................................... 20III. MULTI-VALUED MAPS 1. Upper semi-continuous and compact multi-valued mapB....................... 24 2. Admissible maps........................................................... 26 3. Homotopy and selectors.................................................... 9 4. Lefschetz maps............................................................ 30IV. ANB-s, AANR-B and w-AANB-s 1. ANR-s..................................................................... 32 2. Approximation Theorem..................................................... 33 3. AANR-B.................................................................... 34 4. w-AANR-s.................................................................. 36V. THE LEFSCHETZ FIXED-POINT THEOREM 1. The index of coincidence.................................................. 37 2. The Lefschetz Fixed-Point Theorem for open subsets in $R^n$............... 40 3. The Lefschetz Fixed-Point Theorem for AANR-s.............................. 41 4. Neighbourhood fixed-point property........................................ 45 5. The Lefschetz Fixed-Point Theorem for w-AANR-s............................ 46 6. Two consequences of the Lefschetz Fixed-Point Theorem..................... 47VI. FIXED-POINT PROPERTY OP THE TYCHONOFF CUBE 1. Almost fixed points....................................................... 51 2. Fixed-point property for infinite products................................ 51
LA - eng
UR - http://eudml.org/doc/268399
ER -
Citations in EuDML Documents
top- Adam Idzik, Borsuk-Ulam type theorems
- David Richeson, Connection matrix pairs
- Tomasz Kaczynski, Conley index for set-valued maps: from theory to computation
- Marian Mrozek, From the theorem of Ważewski to computer assisted proofs in dynamics
- Dorota Gabor, The coincidence index for fundamentally contractible multivalued maps with nonconvex values
- Mirosław Ślosarski, Metrizable space of multivalued maps
- Lech Górniewicz, Danuta Rozpłoch-Nowakowska, On the Schauder fixed point theorem
- Peter Saveliev, A Lefschetz-type coincidence theorem
- Liang-Ju Chu, Ching-Yan Lin, New versions on Nikaidô's coincidence theorem
- Dorota Gabor, Systems of Inclusions Involving Fredholm Operators and Noncompact Maps
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.