Repdigits in generalized Pell sequences
Jhon J. Bravo; Jose L. Herrera
Archivum Mathematicum (2020)
- Volume: 056, Issue: 4, page 249-262
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBravo, Jhon J., and Herrera, Jose L.. "Repdigits in generalized Pell sequences." Archivum Mathematicum 056.4 (2020): 249-262. <http://eudml.org/doc/296926>.
@article{Bravo2020,
abstract = {For an integer $k\ge 2$, let $(\{n\})_n$ be the $k-$generalized Pell sequence which starts with $0,\ldots ,0,1$ ($k$ terms) and each term afterwards is given by the linear recurrence $\{n\} = 2\{n-1\}+\{n-2\}+\cdots +\{n-k\}$. In this paper, we find all $k$-generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence $(P_n^\{(2)\})_n$.},
author = {Bravo, Jhon J., Herrera, Jose L.},
journal = {Archivum Mathematicum},
keywords = {generalized Pell numbers; repdigits; linear forms in logarithms; reduction method},
language = {eng},
number = {4},
pages = {249-262},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Repdigits in generalized Pell sequences},
url = {http://eudml.org/doc/296926},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Bravo, Jhon J.
AU - Herrera, Jose L.
TI - Repdigits in generalized Pell sequences
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 4
SP - 249
EP - 262
AB - For an integer $k\ge 2$, let $({n})_n$ be the $k-$generalized Pell sequence which starts with $0,\ldots ,0,1$ ($k$ terms) and each term afterwards is given by the linear recurrence ${n} = 2{n-1}+{n-2}+\cdots +{n-k}$. In this paper, we find all $k$-generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence $(P_n^{(2)})_n$.
LA - eng
KW - generalized Pell numbers; repdigits; linear forms in logarithms; reduction method
UR - http://eudml.org/doc/296926
ER -
References
top- Baker, A., Davenport, H., The equations and , Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. (1969) MR0248079
- Bravo, J.J., Gómez, C.A., Luca, F., 10.18514/MMN.2016.1505, Miskolc Math. Notes 17 (1) (2016), 85–100. (2016) MR3527869DOI10.18514/MMN.2016.1505
- Bravo, J.J., Herrera, J.L., Luca, F., 10.21136/MB.2020.0098-19, doi:10.21136/MB.2020.0098-19 on line in Math. Bohem. DOI10.21136/MB.2020.0098-19
- Bravo, J.J., Luca, F., 10.5486/PMD.2013.5390, Publ. Math. Debrecen 82 (3–4) (2013), 623–639. (2013) MR3066434DOI10.5486/PMD.2013.5390
- Bravo, J.J., Luca, F., 10.1007/s12044-014-0174-7, Proc. Indian Acad. Sci. Math. Sci. 124 (2) (2014), 141–154. (2014) MR3218885DOI10.1007/s12044-014-0174-7
- Dujella, A., Pethö, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (195) (1998), 291–306. (1998) Zbl0911.11018MR1645552
- Faye, B., Luca, F., Pell and Pell-Lucas numbers with only one distinct digits, Ann. of Math. 45 (2015), 55–60. (2015) MR3438812
- Kiliç, E., 10.1016/j.ejc.2007.03.004, European J. Combin. 29 (2008), 701–711. (2008) MR2397350DOI10.1016/j.ejc.2007.03.004
- Kiliç, E., On the usual Fibonacci and generalized order Pell numbers, Ars Combin 109 (2013), 391–403. (2013) MR2426404
- Kiliç, E., Taşci, D., 10.11650/twjm/1500404581, Taiwanese J. Math. 10 (6) (2006), 1661–1670. (2006) MR2275152DOI10.11650/twjm/1500404581
- Koshy, T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, Wiley-Interscience Publications, New York, 2001. (2001) MR1855020
- Luca, F., Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2) (2000), 243–254. (2000) Zbl0958.11007MR1759818
- Marques, D., On -generalized Fibonacci numbers with only one distinct digit, Util. Math. 98 (2015), 23–31. (2015) MR3410879
- Matveev, E.M., An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180, translation in Izv. Math. 64 (2000), no. 6, 1217–1269. (2000) MR1817252
- Normenyo, B., Luca, F., Togbé, A., 10.1007/s10998-018-0247-y, Period. Math. Hungarica 77 (2) (2018), 318–328. (2018) MR3866634DOI10.1007/s10998-018-0247-y
- Normenyo, B., Luca, F., Togbé, A., 10.1007/s40590-018-0202-1, Bol. Soc. Mat. Mex. (3) 25 (2) (2019), 249–266. (2019) MR3964309DOI10.1007/s40590-018-0202-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.