On perfect powers in -generalized Pell sequence
Zafer Şiar; Refik Keskin; Elif Segah Öztaş
Mathematica Bohemica (2023)
- Volume: 148, Issue: 4, page 507-518
- ISSN: 0862-7959
Access Full Article
topAbstract
top
for with initial conditions
In this study, we handle the equation in positive integers , , , such that and give an upper bound on Also, we will show that the equation with has only one solution given by
How to cite
topReferences
top- Baker, A., Davenport, H., 10.1093/qmath/20.1.129, Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137. (1969) Zbl0177.06802MR0248079DOI10.1093/qmath/20.1.129
- Bravo, J. J., Gómez, C. A., Luca, F., 10.18514/MMN.2016.1505, Miskolc Math. Notes 17 (2016), 85-100. (2016) Zbl1389.11041MR3527869DOI10.18514/MMN.2016.1505
- Bravo, J. J., Herrera, J. L., 10.5817/AM2020-4-249, Arch. Math., Brno 56 (2020), 249-262. (2020) Zbl07285963MR4173077DOI10.5817/AM2020-4-249
- Bravo, J. J., Herrera, J. L., Luca, F., 10.1016/j.jnt.2021.03.001, J. Number Theory 226 (2021), 51-71. (2021) Zbl1471.11049MR4239716DOI10.1016/j.jnt.2021.03.001
- Bravo, J. J., Herrera, J. L., Luca, F., 10.21136/MB.2020.0098-19, Math. Bohem. 146 (2021), 199-213. (2021) Zbl07361099MR4261368DOI10.21136/MB.2020.0098-19
- Bravo, J. J., Luca, F., Powers of two in generalized Fibonacci sequences, Rev. Colomb. Mat. 46 (2012), 67-79. (2012) Zbl1353.11020MR2945671
- Bugeaud, Y., 10.4171/183, IRMA Lectures in Mathematics and Theoretical Physics 28. European Mathematical Society, Zürich (2018). (2018) Zbl1394.11001MR3791777DOI10.4171/183
- Bugeaud, Y., Mignotte, M., Siksek, S., 10.4007/annals.2006.163.969, Ann. Math. (2) 163 (2006), 969-1018. (2006) Zbl1113.11021MR2215137DOI10.4007/annals.2006.163.969
- Cohn, J. H. E., Square Fibonacci numbers, etc, Fibonacci Q. 2 (1964), 109-113. (1964) Zbl0126.07201MR0161819
- Cohn, J. H. E., 10.1017/S0017089500031207, Glasg. Math. J. 38 (1996), 19-20. (1996) Zbl0852.11014MR1373953DOI10.1017/S0017089500031207
- Weger, B. M. M. de, Algorithms for Diophantine Equations, CWI Tracts 65. Centrum voor Wiskunde en Informatica, Amsterdam (1989). (1989) Zbl0687.10013MR1026936
- Dujella, A., Pethő, A., 10.1093/qmathj/49.3.291, Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552DOI10.1093/qmathj/49.3.291
- Kiliç, E., Taşci, D., 10.11650/twjm/1500404581, Taiwanese J. Math. 10 (2006), 1661-1670. (2006) Zbl1123.11005MR2275152DOI10.11650/twjm/1500404581
- Ljunggren, W., Zur Theorie der Gleichung , Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27 German. (1942) Zbl0027.01103MR0016375
- Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
- Pethő, A., The Pell sequence contains only trivial perfect powers, Sets, Graphs and Numbers Colloquia Mathematica Societatis János Bolyai 60. North Holland, Amsterdam (1992), 561-568. (1992) Zbl0790.11021MR1218218
- Sanchez, S. G., Luca, F., 10.1007/s40316-014-0025-z, Ann. Math. Qué. 38 (2014), 169-188. (2014) Zbl1361.11007MR3283974DOI10.1007/s40316-014-0025-z
- Şiar, Z., Keskin, R., On perfect powers in -generalized Pell-Lucas sequence, Available at https://arxiv.org/abs/2209.04190 (2022), 17 pages. (2022) MR4725327
- Wu, Z., Zhang, H., 10.1186/1687-1847-2013-189, Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages. (2013) Zbl1390.11042MR3084191DOI10.1186/1687-1847-2013-189