On perfect powers in -generalized Pell sequence
Zafer Şiar; Refik Keskin; Elif Segah Öztaş
Mathematica Bohemica (2023)
- Volume: 148, Issue: 4, page 507-518
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topŞiar, Zafer, Keskin, Refik, and Öztaş, Elif Segah. "On perfect powers in $k$-generalized Pell sequence." Mathematica Bohemica 148.4 (2023): 507-518. <http://eudml.org/doc/299336>.
@article{Şiar2023,
abstract = {Let $k\ge 2$ and let $(P_\{n\}^\{(k)\})_\{n\ge 2-k\}$ be the $k$-generalized Pell sequence defined by \begin\{equation*\} P\_\{n\}^\{(k)\}=2P\_\{n-1\}^\{(k)\}+P\_\{n-2\}^\{(k)\}+\cdots +P\_\{n-k\}^\{(k)\} \end\{equation*\}
for $n\ge 2$ with initial conditions \begin\{equation*\} P\_\{-(k-2)\}^\{(k)\}=P\_\{-(k-3)\}^\{(k)\}=\cdots =P\_\{-1\}^\{(k)\}=P\_\{0\}^\{(k)\}=0,P\_\{1\}^\{(k)\}=1. \end\{equation*\}
In this study, we handle the equation $P_\{n\}^\{(k)\}=y^\{m\}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\ge 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_\{n\}^\{(k)\}=y^\{m\}$ with $2\le y\le 1000$ has only one solution given by $P_\{7\}^\{(2)\}=13^\{2\}.$},
author = {Şiar, Zafer, Keskin, Refik, Öztaş, Elif Segah},
journal = {Mathematica Bohemica},
keywords = {Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method},
language = {eng},
number = {4},
pages = {507-518},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On perfect powers in $k$-generalized Pell sequence},
url = {http://eudml.org/doc/299336},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Şiar, Zafer
AU - Keskin, Refik
AU - Öztaş, Elif Segah
TI - On perfect powers in $k$-generalized Pell sequence
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 507
EP - 518
AB - Let $k\ge 2$ and let $(P_{n}^{(k)})_{n\ge 2-k}$ be the $k$-generalized Pell sequence defined by \begin{equation*} P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)} \end{equation*}
for $n\ge 2$ with initial conditions \begin{equation*} P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots =P_{-1}^{(k)}=P_{0}^{(k)}=0,P_{1}^{(k)}=1. \end{equation*}
In this study, we handle the equation $P_{n}^{(k)}=y^{m}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\ge 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_{n}^{(k)}=y^{m}$ with $2\le y\le 1000$ has only one solution given by $P_{7}^{(2)}=13^{2}.$
LA - eng
KW - Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method
UR - http://eudml.org/doc/299336
ER -
References
top- Baker, A., Davenport, H., 10.1093/qmath/20.1.129, Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137. (1969) Zbl0177.06802MR0248079DOI10.1093/qmath/20.1.129
- Bravo, J. J., Gómez, C. A., Luca, F., 10.18514/MMN.2016.1505, Miskolc Math. Notes 17 (2016), 85-100. (2016) Zbl1389.11041MR3527869DOI10.18514/MMN.2016.1505
- Bravo, J. J., Herrera, J. L., 10.5817/AM2020-4-249, Arch. Math., Brno 56 (2020), 249-262. (2020) Zbl07285963MR4173077DOI10.5817/AM2020-4-249
- Bravo, J. J., Herrera, J. L., Luca, F., 10.1016/j.jnt.2021.03.001, J. Number Theory 226 (2021), 51-71. (2021) Zbl1471.11049MR4239716DOI10.1016/j.jnt.2021.03.001
- Bravo, J. J., Herrera, J. L., Luca, F., 10.21136/MB.2020.0098-19, Math. Bohem. 146 (2021), 199-213. (2021) Zbl07361099MR4261368DOI10.21136/MB.2020.0098-19
- Bravo, J. J., Luca, F., Powers of two in generalized Fibonacci sequences, Rev. Colomb. Mat. 46 (2012), 67-79. (2012) Zbl1353.11020MR2945671
- Bugeaud, Y., 10.4171/183, IRMA Lectures in Mathematics and Theoretical Physics 28. European Mathematical Society, Zürich (2018). (2018) Zbl1394.11001MR3791777DOI10.4171/183
- Bugeaud, Y., Mignotte, M., Siksek, S., 10.4007/annals.2006.163.969, Ann. Math. (2) 163 (2006), 969-1018. (2006) Zbl1113.11021MR2215137DOI10.4007/annals.2006.163.969
- Cohn, J. H. E., Square Fibonacci numbers, etc, Fibonacci Q. 2 (1964), 109-113. (1964) Zbl0126.07201MR0161819
- Cohn, J. H. E., 10.1017/S0017089500031207, Glasg. Math. J. 38 (1996), 19-20. (1996) Zbl0852.11014MR1373953DOI10.1017/S0017089500031207
- Weger, B. M. M. de, Algorithms for Diophantine Equations, CWI Tracts 65. Centrum voor Wiskunde en Informatica, Amsterdam (1989). (1989) Zbl0687.10013MR1026936
- Dujella, A., Pethő, A., 10.1093/qmathj/49.3.291, Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552DOI10.1093/qmathj/49.3.291
- Kiliç, E., Taşci, D., 10.11650/twjm/1500404581, Taiwanese J. Math. 10 (2006), 1661-1670. (2006) Zbl1123.11005MR2275152DOI10.11650/twjm/1500404581
- Ljunggren, W., Zur Theorie der Gleichung , Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27 German. (1942) Zbl0027.01103MR0016375
- Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
- Pethő, A., The Pell sequence contains only trivial perfect powers, Sets, Graphs and Numbers Colloquia Mathematica Societatis János Bolyai 60. North Holland, Amsterdam (1992), 561-568. (1992) Zbl0790.11021MR1218218
- Sanchez, S. G., Luca, F., 10.1007/s40316-014-0025-z, Ann. Math. Qué. 38 (2014), 169-188. (2014) Zbl1361.11007MR3283974DOI10.1007/s40316-014-0025-z
- Şiar, Z., Keskin, R., On perfect powers in -generalized Pell-Lucas sequence, Available at https://arxiv.org/abs/2209.04190 (2022), 17 pages. (2022) MR4725327
- Wu, Z., Zhang, H., 10.1186/1687-1847-2013-189, Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages. (2013) Zbl1390.11042MR3084191DOI10.1186/1687-1847-2013-189
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.