On perfect powers in -generalized Pell sequence

Zafer Şiar; Refik Keskin; Elif Segah Öztaş

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 4, page 507-518
  • ISSN: 0862-7959

Abstract

top
Let and let be the -generalized Pell sequence defined by
for with initial conditions
In this study, we handle the equation in positive integers , , , such that and give an upper bound on Also, we will show that the equation with has only one solution given by

How to cite

top

Şiar, Zafer, Keskin, Refik, and Öztaş, Elif Segah. "On perfect powers in $k$-generalized Pell sequence." Mathematica Bohemica 148.4 (2023): 507-518. <http://eudml.org/doc/299336>.

@article{Şiar2023,
abstract = {Let $k\ge 2$ and let $(P_\{n\}^\{(k)\})_\{n\ge 2-k\}$ be the $k$-generalized Pell sequence defined by \begin\{equation*\} P\_\{n\}^\{(k)\}=2P\_\{n-1\}^\{(k)\}+P\_\{n-2\}^\{(k)\}+\cdots +P\_\{n-k\}^\{(k)\} \end\{equation*\} for $n\ge 2$ with initial conditions \begin\{equation*\} P\_\{-(k-2)\}^\{(k)\}=P\_\{-(k-3)\}^\{(k)\}=\cdots =P\_\{-1\}^\{(k)\}=P\_\{0\}^\{(k)\}=0,P\_\{1\}^\{(k)\}=1. \end\{equation*\} In this study, we handle the equation $P_\{n\}^\{(k)\}=y^\{m\}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\ge 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_\{n\}^\{(k)\}=y^\{m\}$ with $2\le y\le 1000$ has only one solution given by $P_\{7\}^\{(2)\}=13^\{2\}.$},
author = {Şiar, Zafer, Keskin, Refik, Öztaş, Elif Segah},
journal = {Mathematica Bohemica},
keywords = {Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method},
language = {eng},
number = {4},
pages = {507-518},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On perfect powers in $k$-generalized Pell sequence},
url = {http://eudml.org/doc/299336},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Şiar, Zafer
AU - Keskin, Refik
AU - Öztaş, Elif Segah
TI - On perfect powers in $k$-generalized Pell sequence
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 507
EP - 518
AB - Let $k\ge 2$ and let $(P_{n}^{(k)})_{n\ge 2-k}$ be the $k$-generalized Pell sequence defined by \begin{equation*} P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)} \end{equation*} for $n\ge 2$ with initial conditions \begin{equation*} P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots =P_{-1}^{(k)}=P_{0}^{(k)}=0,P_{1}^{(k)}=1. \end{equation*} In this study, we handle the equation $P_{n}^{(k)}=y^{m}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\ge 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_{n}^{(k)}=y^{m}$ with $2\le y\le 1000$ has only one solution given by $P_{7}^{(2)}=13^{2}.$
LA - eng
KW - Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method
UR - http://eudml.org/doc/299336
ER -

References

top
  1. Baker, A., Davenport, H., 10.1093/qmath/20.1.129, Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137. (1969) Zbl0177.06802MR0248079DOI10.1093/qmath/20.1.129
  2. Bravo, J. J., Gómez, C. A., Luca, F., 10.18514/MMN.2016.1505, Miskolc Math. Notes 17 (2016), 85-100. (2016) Zbl1389.11041MR3527869DOI10.18514/MMN.2016.1505
  3. Bravo, J. J., Herrera, J. L., 10.5817/AM2020-4-249, Arch. Math., Brno 56 (2020), 249-262. (2020) Zbl07285963MR4173077DOI10.5817/AM2020-4-249
  4. Bravo, J. J., Herrera, J. L., Luca, F., 10.1016/j.jnt.2021.03.001, J. Number Theory 226 (2021), 51-71. (2021) Zbl1471.11049MR4239716DOI10.1016/j.jnt.2021.03.001
  5. Bravo, J. J., Herrera, J. L., Luca, F., 10.21136/MB.2020.0098-19, Math. Bohem. 146 (2021), 199-213. (2021) Zbl07361099MR4261368DOI10.21136/MB.2020.0098-19
  6. Bravo, J. J., Luca, F., Powers of two in generalized Fibonacci sequences, Rev. Colomb. Mat. 46 (2012), 67-79. (2012) Zbl1353.11020MR2945671
  7. Bugeaud, Y., 10.4171/183, IRMA Lectures in Mathematics and Theoretical Physics 28. European Mathematical Society, Zürich (2018). (2018) Zbl1394.11001MR3791777DOI10.4171/183
  8. Bugeaud, Y., Mignotte, M., Siksek, S., 10.4007/annals.2006.163.969, Ann. Math. (2) 163 (2006), 969-1018. (2006) Zbl1113.11021MR2215137DOI10.4007/annals.2006.163.969
  9. Cohn, J. H. E., Square Fibonacci numbers, etc, Fibonacci Q. 2 (1964), 109-113. (1964) Zbl0126.07201MR0161819
  10. Cohn, J. H. E., 10.1017/S0017089500031207, Glasg. Math. J. 38 (1996), 19-20. (1996) Zbl0852.11014MR1373953DOI10.1017/S0017089500031207
  11. Weger, B. M. M. de, Algorithms for Diophantine Equations, CWI Tracts 65. Centrum voor Wiskunde en Informatica, Amsterdam (1989). (1989) Zbl0687.10013MR1026936
  12. Dujella, A., Pethő, A., 10.1093/qmathj/49.3.291, Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552DOI10.1093/qmathj/49.3.291
  13. Kiliç, E., Taşci, D., 10.11650/twjm/1500404581, Taiwanese J. Math. 10 (2006), 1661-1670. (2006) Zbl1123.11005MR2275152DOI10.11650/twjm/1500404581
  14. Ljunggren, W., Zur Theorie der Gleichung , Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27 German. (1942) Zbl0027.01103MR0016375
  15. Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
  16. Pethő, A., The Pell sequence contains only trivial perfect powers, Sets, Graphs and Numbers Colloquia Mathematica Societatis János Bolyai 60. North Holland, Amsterdam (1992), 561-568. (1992) Zbl0790.11021MR1218218
  17. Sanchez, S. G., Luca, F., 10.1007/s40316-014-0025-z, Ann. Math. Qué. 38 (2014), 169-188. (2014) Zbl1361.11007MR3283974DOI10.1007/s40316-014-0025-z
  18. Şiar, Z., Keskin, R., On perfect powers in -generalized Pell-Lucas sequence, Available at https://arxiv.org/abs/2209.04190 (2022), 17 pages. (2022) MR4725327
  19. Wu, Z., Zhang, H., 10.1186/1687-1847-2013-189, Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages. (2013) Zbl1390.11042MR3084191DOI10.1186/1687-1847-2013-189

NotesEmbed ?

top

You must be logged in to post comments.