On the -fold symmetric product of a space with a --property -network (-network)
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 2, page 257-263
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topTuyen, Luong Q., and Tuyen, Ong V.. "On the $n$-fold symmetric product of a space with a $\sigma $-$(P)$-property $cn$-network ($ck$-network)." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 257-263. <http://eudml.org/doc/296938>.
@article{Tuyen2020,
	abstract = {We study the relation between a space $X$ satisfying certain generalized metric properties and its $n$-fold symmetric product $\mathcal \{F\}_n(X)$ satisfying the same properties. We prove that $X$ has a $\sigma $-$(P)$-property $cn$-network if and only if so does $\,\mathcal \{F\}_n(X)$. Moreover, if $\,X$ is regular then $X$ has a $\sigma $-$(P)$-property $ck$-network if and only if so does $\,\mathcal \{F\}_n(X)$. By these results, we obtain that $X$ is strict $\sigma $-space (strict $\aleph $-space) if and only if so is $\mathcal \{F\}_n(X)$.},
	author = {Tuyen, Luong Q., Tuyen, Ong V.},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {$\sigma $-$(P)$-property; $cn$-network; $ck$-network; strict $\sigma $-space; strict $\aleph $-space},
	language = {eng},
	number = {2},
	pages = {257-263},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {On the $n$-fold symmetric product of a space with a $\sigma $-$(P)$-property $cn$-network ($ck$-network)},
	url = {http://eudml.org/doc/296938},
	volume = {61},
	year = {2020},
}
TY  - JOUR
AU  - Tuyen, Luong Q.
AU  - Tuyen, Ong V.
TI  - On the $n$-fold symmetric product of a space with a $\sigma $-$(P)$-property $cn$-network ($ck$-network)
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2020
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 61
IS  - 2
SP  - 257
EP  - 263
AB  - We study the relation between a space $X$ satisfying certain generalized metric properties and its $n$-fold symmetric product $\mathcal {F}_n(X)$ satisfying the same properties. We prove that $X$ has a $\sigma $-$(P)$-property $cn$-network if and only if so does $\,\mathcal {F}_n(X)$. Moreover, if $\,X$ is regular then $X$ has a $\sigma $-$(P)$-property $ck$-network if and only if so does $\,\mathcal {F}_n(X)$. By these results, we obtain that $X$ is strict $\sigma $-space (strict $\aleph $-space) if and only if so is $\mathcal {F}_n(X)$.
LA  - eng
KW  - $\sigma $-$(P)$-property; $cn$-network; $ck$-network; strict $\sigma $-space; strict $\aleph $-space
UR  - http://eudml.org/doc/296938
ER  - 
References
top- Borsuk K., Ulam S., 10.1090/S0002-9904-1931-05290-3, Bull. Amer. Math. Soc. 37 (1931), no. 12, 875–882. Zbl0003.22402MR1562283DOI10.1090/S0002-9904-1931-05290-3
 - Gabriyelyan S. S., Kakol J., On -spaces and related concepts, Topology Appl. 191 (2015), 178–198. MR3361065
 - Good C., Macías S., Symmetric products of generalized metric spaces, Topology Appl. 206 (2016), 93–114. MR3494434
 - Peng L.-X., Sun Y., 10.1016/j.topol.2017.09.036, Topology Appl. 231 (2017), 411–429. MR3712980DOI10.1016/j.topol.2017.09.036
 - Tang Z., Lin S., Lin F., 10.1016/j.topol.2017.11.004, Topology Appl. 234 (2018), 26–45. MR3739454DOI10.1016/j.topol.2017.11.004
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.