About -covers and -networks on the Vietoris hyperspace
Luong Quoc Tuyen; Ong V. Tuyen; Phan D. Tuan; Nguzen X. Truc
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 4, page 519-527
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTuyen, Luong Quoc, et al. "About $wcs$-covers and $wcs^*$-networks on the Vietoris hyperspace $\mathcal {F}(X)$." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 519-527. <http://eudml.org/doc/299324>.
@article{Tuyen2023,
abstract = {We study some generalized metric properties on the hyperspace $\mathcal \{F\}(X)$ of finite subsets of a space $X$ endowed with the Vietoris topology. We prove that $X$ has a point-star network consisting of (countable) $wcs$-covers if and only if so does $\mathcal \{F\}(X)$. Moreover, $X$ has a sequence of $wcs$-covers with property $(P)$ which is a point-star network if and only if so does $\mathcal \{F\}(X)$, where $(P)$ is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. On the other hand, $X$ has a $wcs^*$-network with property $\sigma $-$(P)$ if and only if so does $\mathcal \{F\}(X)$. By these results, we obtain some results related to the images of metric spaces and separable metric spaces under some kinds of continuous mappings on the Vietoris hyperspace $\mathcal \{F\}(X)$.},
author = {Tuyen, Luong Quoc, Tuyen, Ong V., Tuan, Phan D., Truc, Nguzen X.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperspace; generalized metric property; $wcs$-cover; $wcs^*$-network},
language = {eng},
number = {4},
pages = {519-527},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {About $wcs$-covers and $wcs^*$-networks on the Vietoris hyperspace $\mathcal \{F\}(X)$},
url = {http://eudml.org/doc/299324},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Tuyen, Luong Quoc
AU - Tuyen, Ong V.
AU - Tuan, Phan D.
AU - Truc, Nguzen X.
TI - About $wcs$-covers and $wcs^*$-networks on the Vietoris hyperspace $\mathcal {F}(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 519
EP - 527
AB - We study some generalized metric properties on the hyperspace $\mathcal {F}(X)$ of finite subsets of a space $X$ endowed with the Vietoris topology. We prove that $X$ has a point-star network consisting of (countable) $wcs$-covers if and only if so does $\mathcal {F}(X)$. Moreover, $X$ has a sequence of $wcs$-covers with property $(P)$ which is a point-star network if and only if so does $\mathcal {F}(X)$, where $(P)$ is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. On the other hand, $X$ has a $wcs^*$-network with property $\sigma $-$(P)$ if and only if so does $\mathcal {F}(X)$. By these results, we obtain some results related to the images of metric spaces and separable metric spaces under some kinds of continuous mappings on the Vietoris hyperspace $\mathcal {F}(X)$.
LA - eng
KW - hyperspace; generalized metric property; $wcs$-cover; $wcs^*$-network
UR - http://eudml.org/doc/299324
ER -
References
top- An T. V., Tuyen L. Q., On -images of separable metric spaces and a problem of Shou Lin, Matematički Vesnik 64 (250) (2012), 297–302. MR2965962
- Gao Z. M., -space is invariant under perfect mappings, Questions Answer Gen. Topology 5 (1987), no. 2, 271–279. MR0917885
- Ge Y., On pseudo-sequence coverings, -images of metric spaces, Mat. Vesnik 57 (2005), no. 3–4, 113–120. MR2194600
- Ge Y., Gu J. S., On -images of separable metric spaces, Sci. Ser. A Math. Sci. (N.S.) 10 (2004), 65–71. MR2127483
- Good C., Macías S., Symmetric products of generalized metric spaces, Topology Appl. 206 (2016), 93–114. MR3494434
- Guthrie J. A., 10.1016/0016-660X(71)90116-4, General Topology and Appl. 1 (1971), no. 2, 105–110. MR0288726DOI10.1016/0016-660X(71)90116-4
- Li J. J., Images of a Locally Separable Metric Space and Their Associated Results, Doctoral Thesis, Shandong University, Jinan, 2000 (in Chinese).
- Li Z., 10.1155/IJMMS.2005.1101, Int. J. Math. Math. Sci. 7 (2005), no. 7, 1101–1107. MR2170507DOI10.1155/IJMMS.2005.1101
- Lin F., Shen R., Liu C., Generalized metric properties on hyperspaces with the Vietoris topology, Rocky Mountain J. Math. 51 (2021), no. 5, 1761–1779. MR4382997
- Lin S., Point-countable Covers and Sequence-Covering Mappings, China Science Press, Beijing, 2015 (in Chinese). MR1939779
- Lin S., Tanaka Y., 10.1016/0166-8641(94)90101-5, Topology Appl. 59 (1994), no. 1, 79–86. Zbl0817.54025MR1293119DOI10.1016/0166-8641(94)90101-5
- Liu C., Lin F., 10.1007/s40840-022-01349-2, Bull. Malays. Math. Sci. Soc. 45 (2022), no. 5, 1955–1974. MR4489545DOI10.1007/s40840-022-01349-2
- Liu C., Lin F., Hyperspaces with a countable character of closed subset, Topology Appl. 328 (2023), Paper No. 108461, 14 pages. MR4553037
- Liu C., Lin F., The quasi-metrizability of hyperspaces, Topology Appl. 338 (2023), Paper No. 108665, 11 pages. MR4629790
- Mou L., Li P., Lin S., Regular -diagonals and hyperspaces, Topology Appl. 301 (2021), Paper No. 107530, 9 pages. MR4312980
- Peng L.-X., Sun Y., 10.1016/j.topol.2017.09.036, Topology Appl. 231 (2017), 411–429. MR3712980DOI10.1016/j.topol.2017.09.036
- Tanaka Y., Ge Y., Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math. 32 (2006), no. 1, 99–117. MR2202355
- Tang Z., Lin S., Lin F., 10.1016/j.topol.2017.11.004, Topology Appl. 234 (2018), 26–45. MR3739454DOI10.1016/j.topol.2017.11.004
- Tuyen L. Q., Tuyen O. V., On the -fold symmetric product of a space with a --property -network (-network), Comment. Math. Univ. Carolinae 61 (2020), no. 2, 257–263. MR4143708
- Tuyen L. Q., Tuyen O. V., A note on the hyperspace of finite subsets, Fasc. Math. 65 (2021), 67–73. MR4478558
- Tuyen L. Q., Tuyen O. V., Kočinac L. D. R., 10.15672/hujms.1203236, Hacet. J. Math. Stat. 53 (2024), no. 2, 356–366. MR4741786DOI10.15672/hujms.1203236
- Yan P., On strong sequence-covering compact mappings, Northeast. Math. J. 14 (1998), no. 3, 341–344. Zbl0927.54030MR1685267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.