Factorized mutual information maximization
Thomas Merkh; Guido F. Montúfar
Kybernetika (2020)
- Volume: 56, Issue: 5, page 948-978
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMerkh, Thomas, and Montúfar, Guido F.. "Factorized mutual information maximization." Kybernetika 56.5 (2020): 948-978. <http://eudml.org/doc/296942>.
@article{Merkh2020,
abstract = {We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.},
author = {Merkh, Thomas, Montúfar, Guido F.},
journal = {Kybernetika},
keywords = {multi-information; mutual information; divergence maximization; marginal specification problem; transportation polytope},
language = {eng},
number = {5},
pages = {948-978},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Factorized mutual information maximization},
url = {http://eudml.org/doc/296942},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Merkh, Thomas
AU - Montúfar, Guido F.
TI - Factorized mutual information maximization
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 5
SP - 948
EP - 978
AB - We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.
LA - eng
KW - multi-information; mutual information; divergence maximization; marginal specification problem; transportation polytope
UR - http://eudml.org/doc/296942
ER -
References
top- Alemi, A., Fischer, I., Dillon, J., Murphy, K., Deep variational information bottleneck., In: ICLR, 2017.
- Ay, N., 10.1214/aop/1020107773, Ann. Probab. 30 (2002), 1, 416-436. Zbl1010.62007MR1894113DOI10.1214/aop/1020107773
- Ay, N., 10.1162/089976602760805368, Neural Comput. 14 (2002), 12, 2959-2980. Zbl1079.68582DOI10.1162/089976602760805368
- Ay, N., Bertschinger, N., Der, R., Güttler, F., Olbrich, E., 10.1140/epjb/e2008-00175-0, Europ. Phys. J. B 63 (2008), 3, 329-339. MR2421556DOI10.1140/epjb/e2008-00175-0
- Ay, N., Knauf, A., Maximizing multi-information., Kybernetika 42 (2006), 5, 517-538. Zbl1249.82011MR2283503
- Baldassarre, G., Mirolli, M., 10.1007/978-3-642-32375-1_1, In: Intrinsically motivated learning in natural and artificial systems, Springer 2013, pp. 1-14. DOI10.1007/978-3-642-32375-1_1
- Baudot, P., Tapia, M., Bennequin, D., Goaillard, J.-M., 10.3390/e21090869, Entropy 21 (2019), 9, 869. MR4016406DOI10.3390/e21090869
- Bekkerman, R., Sahami, M., Learned-Miller, E., 10.1007/11871842_8, In: European Conference on Machine Learning, Springer 2006, pp. 30-41. MR2336649DOI10.1007/11871842_8
- Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., Hjelm, D., Mutual information neural estimation., In: Proc. 35th International Conference on Machine Learning (J. Dy and A. Krause, eds.), Vol. 80 of Proceedings of Machine Learning Research, pp. 531-540, Stockholm 2018. PMLR.
- Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N., 10.3390/e16042161, Entropy 16 (2014), 4, 2161-2183. MR3195286DOI10.3390/e16042161
- Bialek, W., Nemenman, I., Tishby, N., 10.1162/089976601753195969, Neural Comput. 13 (2001), 11, 2409-2463. DOI10.1162/089976601753195969
- Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., Efros, A. A., Large-scale study of curiosity-driven learning., In: ICLR, 2019.
- Buzzi, J., Zambotti, L., 10.1007/s00440-011-0350-y, Probab. Theory Related Fields 153 (2012), 3-4, 421-440. MR2948682DOI10.1007/s00440-011-0350-y
- Chentanez, N., Barto, A. G., Singh, S. P., 10.21236/ada440280, In: Adv. Neural Inform. Process. Systems 2005, pp. 1281-1288. DOI10.21236/ada440280
- Crutchfield, J. P., Feldman, D. P., 10.1142/s021952590100019x, Adv. Complex Systems 4 (2001), 02n03, 251-264. MR1873760DOI10.1142/s021952590100019x
- Loera, J. de, DOI
- Friedman, N., Mosenzon, O., Slonim, N., Tishby, N., Multivariate information bottleneck., In: Proc. Seventeenth conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 2001, pp. 152-161.
- Gabrié, M., Manoel, A., Luneau, C., Barbier, j., Macris, N., Krzakala, F., Zdeborová, L., Entropy and mutual information in models of deep neural networks., In: Advances in Neural Information Processing Systems 31 (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), Curran Associates, Inc. 2018, pp. 1821-1831. MR3841726
- Gao, S., Steeg, G. Ver, Galstyan, A., Efficient estimation of mutual information for strongly dependent variables., In: Artificial Intelligence and Statistics 2015, pp. 277-286.
- Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., Y. Bengio., Learning deep representations by mutual information, Representations, maximization. In International Conference on Learning. 2019.
- Hosten, S., Sullivant, S., 10.1006/jcta.2002.3301, J. Comb. Theory Ser. A 100 (2002), 2, 277-301. MR1940337DOI10.1006/jcta.2002.3301
- Jakulin, A., Bratko, I., Quantifying and visualizing attribute interactions: An approach based on entropy., 2003.
- Klyubin, A. S., Polani, D., Nehaniv, C. L., Empowerment: A universal agent-centric measure of control., In: 2005 IEEE Congress on Evolutionary Computation, Vol. 1, IEEE 2005, pp. 128-135.
- Kraskov, A., Stögbauer, H./, Grassberger, P., 10.1103/physreve.69.066138, Phys. Rev. E 69 (2004), 6, 066138. MR2096503DOI10.1103/physreve.69.066138
- Matúš, F., Maximization of information divergences from binary i.i.d. sequences., In: Proc. IPMU 2004 2 (2004), pp. 1303-1306.
- Matúš, F., 10.1109/tit.2009.2032806, IEEE Trans. Inf. Theor. 55 (2009), 12, 5375-5381. MR2597169DOI10.1109/tit.2009.2032806
- Matúš, F., Ay, N., On maximization of the information divergence from an exponential family., In: Proc. 6th Workshop on Uncertainty Processing: Oeconomica 2003, Hejnice 2003, pp. 199-204.
- Matúš, F., Rauh, J., 10.1109/isit.2011.6034269, In: 2011 IEEE International Symposium on Information Theory Proceedings 2011, pp. 903-907. MR2817016DOI10.1109/isit.2011.6034269
- McGill, W., 10.1109/tit.1954.1057469, Trans. IRE Profess. Group Inform. Theory 4 (1054), 4, 93-111. MR0088155DOI10.1109/tit.1954.1057469
- Mohamed, S., Rezende, D. J., Variational information maximisation for intrinsically motivated reinforcement learning., In: Advances in Neural Information Processing Systems 2015, 2125-2133, 2015.
- Montúfar, G., 10.1162/neco_a_00601, Neural Comput. 26 (2014), 7, 1386-1407. MR3222078DOI10.1162/neco_a_00601
- Montúfar, G., Ghazi-Zahedi, K., Ay, N., 10.1371/journal.pcbi.1004427, PLOS Comput. Biology 11 (2015), 9, 1-22. DOI10.1371/journal.pcbi.1004427
- Montúfar, G., Ghazi-Zahedi, K., Ay, N., Information theoretically aided reinforcement learning for embodied agents., arXiv preprint arXiv:1605.09735, 2016.
- Montúfar, G., Rauh, J., Ay, N., Expressive power and approximation errors of restricted Boltzmann machines., In: Advances in Neural Information Processing Systems 2011, pp. 415-423.
- Montúfar, G., Rauh, J., Ay, N., 10.1007/978-3-642-40020-9_85, In: Geometric Science of Information GSI 2013 (F. Nielsen and F. Barbaresco, eds.), Lecture Notes in Computer Science 3085 Springer 2013, pp. 759-766. MR3126126DOI10.1007/978-3-642-40020-9_85
- Rauh, J., 10.1109/tit.2011.2136230, IEEE Trans. Inform. Theory 57 (2011), 6, 3236-3247. MR2817016DOI10.1109/tit.2011.2136230
- Rauh, J., Finding the Maximizers of the Information Divergence from an Exponential Family., PhD. Thesis, Universität Leipzig 2011. MR2817016
- Ince, R. A. A., Quantities, S. Panzeri, Schultz, S. R., Summary of Information Theoretic, New York, pages 1-6, Springer, 2013.
- Roulston, M. S., 10.1016/s0167-2789(98)00269-3, Physica D: Nonlinear Phenomena 125 (1999), 3-4, 285-294. DOI10.1016/s0167-2789(98)00269-3
- Schossau, J., Adami, C., Hintze, A., 10.3390/e18010006, Entropy 18 (2015), 1, 6. DOI10.3390/e18010006
- Slonim, N., Atwal, G. S., Tkacik, G., Bialek, W., Estimating mutual information and multi-information in large networks., arXiv preprint cs/0502017, 2005.
- Slonim, N., Friedman, N., Tishby, N., 10.1162/neco.2006.18.8.1739, Neural Comput. 18 (2006), 8, 1739-1789. MR2230853DOI10.1162/neco.2006.18.8.1739
- Still, S., Precup, D., 10.1007/s12064-011-0142-z, Theory Biosci. 131 (2012), 3, 139-148. DOI10.1007/s12064-011-0142-z
- Developers, The Sage, SageMath, the Sage Mathematics Software System (Version 8.7), 2019., https://www.sagemath.org.
- Tishby, N., Pereira, F. C., Bialek, W., The information bottleneck method., In: Proc. 37th Annual Allerton Conference on Communication, Control and Computing 1999, pp. 368-377.
- Vergara, J. R., Estévez, P. A., 10.1007/s00521-013-1368-0, Neural Comput. Appl. 24 (2014), 1, 175-186. DOI10.1007/s00521-013-1368-0
- Watanabe, S., 10.1147/rd.41.0066, IBM J. Res. Develop. 4 (1960), 1, 66-82. MR0109755DOI10.1147/rd.41.0066
- Witsenhausen, H. S., Wyner, A. D., 10.1109/tit.1975.1055437, IEEE Trans. Inform. Theory 21 (1075), 5, 493-501. MR0381861DOI10.1109/tit.1975.1055437
- Yemelichev, V., Kovalev, M., Kravtsov, M., Polytopes, Graphs and Optimisation., Cambridge University Press, 1984. MR0744197
- Zahedi, K., Ay, N., Der, R., 10.1177/1059712310375314, Adaptive Behavior 18 (2010), 3-4, 338-355. DOI10.1177/1059712310375314
- Zahedi, K., Martius, G., Ay, N., 10.3389/fpsyg.2013.00801, Front. Psychol. (2013), 4, 801. DOI10.3389/fpsyg.2013.00801
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.